“Feathered” fractal surfaces to minimize secondary electron emission for a wide range of incident angles

Charles Swanson, and Igor D. Kaganovich

Citation: Journal of Applied Physics 122, 043301 (2017);
View online: https://doi.org/10.1063/1.4995535
View Table of Contents: http://aip.scitation.org/toc/jap/122/4
Published by the American Institute of Physics

Articles you may be interested in

Ultrafast dynamics of a series multi-branched styryl derivatives with reverse conjugated structural configuration
Journal of Applied Physics 122, 043101 (2017); 10.1063/1.4995795

Modeling of reduced effective secondary electron emission yield from a velvet surface
Journal of Applied Physics 120, 213302 (2016); 10.1063/1.4971337

Tutorial: Physics and modeling of Hall thrusters
Journal of Applied Physics 121, 011101 (2017); 10.1063/1.4972269

Effects of magnetic field profile near anode on ion acceleration characteristics of a diverging magnetic field electrostatic thruster
Journal of Applied Physics 122, 043302 (2017); 10.1063/1.4995286

Secondary electron emission yield from high aspect ratio carbon velvet surfaces
Journal of Applied Physics 122, 173301 (2017); 10.1063/1.4993979

High-efficiency wideband reflection polarization conversion metasurface for circularly polarized waves
Journal of Applied Physics 122, 043102 (2017); 10.1063/1.4996643
“Feathered” fractal surfaces to minimize secondary electron emission for a wide range of incident angles

Charles Swanson and Igor D. Kaganovich
Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543, USA

(Received 3 April 2017; accepted 11 July 2017; published online 24 July 2017)

Complex structures on a material surface can significantly reduce the total secondary electron emission from that surface. The reduction occurs due to the capture of low-energy, true secondary electrons emitted at one point of the structure and intersecting another. We performed Monte Carlo calculations to demonstrate that fractal surfaces can reduce net secondary electron emission produced by the surface as compared to the flat surface. Specifically, we describe one surface, a “feathered” surface, which reduces the secondary electron emission yield more effectively than other previously considered configurations. Specifically, feathers grown onto a surface suppress secondary electron emission from shallow angles of incidence more effectively than velvet. We find that, for the surface simulated, secondary electron emission yield remains below 20% of its unsuppressed value, even for shallow incident angles, where the velvet-only surface gives reduction factor of only 50%. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4995535]

I. INTRODUCTION

Secondary electron emission (SEE) from dielectric and conductive surfaces can significantly change the flux and potential profiles at material interfaces, often limiting the performance of many plasma applications and vacuum electronics such as RF amplifiers,1 particle accelerators, and Hall thrusters.2–4 For these applications, it is important to reduce the flux of secondary electrons emitted from the surface. Various textures and treatments have been applied to material surfaces to minimize this secondary electron emission, such as triangular grooves,5–8 oxides,9 fibrous structures (velvet, fuzz, and foam4,10–14), and dendritic structures.15 Ye et al. have recently analyzed and optimized a micro-porous surface to minimize SEE.16 However, the search for practical solutions for surfaces that can extinguish secondary electron emission is still continuing, and we demonstrate that fractal, feathered surfaces are promising candidates. In this paper, “reduced by n%” means $\gamma \rightarrow (1 - \frac{n}{100\%})\gamma$ and “reduction factor n%” means $\gamma \rightarrow \frac{\gamma}{100\%\gamma}$.

II. GEOMETRIC CONSIDERATION

Consider a flat surface with some secondary electron emission yield (SEY, the ratio of secondary electron flux to primary electron flux) γ_{flat}. Now suppose there is some texture that can be applied to the surface to produce a reduced secondary electron emission yield, $\gamma = R\gamma_{\text{flat}}$, where $R < 1$.

Some examples of such textures are, as noted in Sec. II, triangular grooves,5–8 velvet and other fibers,4,10–14 and dendritic structures.15 The mechanism for SEY suppression is the capture of first-generation secondary electrons emitted from deep inside the structure. In order to contribute to the net outgoing secondary electron emission flux, electrons must traverse this structure without intersecting any part of it and escape.

If this surface is continuous, we can consider a zoomed-in system of one surface element which appears flat. If this flat surface is textured again with smaller-scale versions of the surface, then an electron will have to traverse both the primary structure at the initial scale and the secondary structure at the smaller scale. Thus, the reduction factor R can be reduced further to some smaller $R_{\text{new}} = R \cdot R_1$.

This argument implies that if we continue this process N times and create an Nth-order geometry, which is a geometry that has had smaller versions of itself tiled onto its flat surface elements at N different smaller scales, it will be a suitable surface to greatly reduce the SEY from a flat surface.

Surfaces produced by this procedure will look self-similar at all scales. If the seed geometry is a triangular groove, for example, the recursed geometry is the Koch curve.17 If $N \rightarrow \infty$, such a surface is a fractal.

It is not necessarily the case that $R_1 = R$. The numerical value of R is calculated by averaging over angular distribution of the emitted secondary electrons. For a flat surface, this distribution is assumed to follow a cosine law.18 However, this assumption does not hold for the fractal surface. The angular distribution of emitted secondary electrons from a complex surface can be strongly non-cosine at large distances from a small-scale structure due to geometrical consideration of the view angle. Therefore, the SEY reduction factor for an Nth order recursion of geometry down to smaller scales does not necessarily scale as R^N.

III. VELVET AS A CHOICE FOR THE SEED GEOMETRY

If the seed geometry is a velvet surface, which is a lattice of long whiskers grown onto a flat substrate, the recursed geometry will be a lattice of whiskers which themselves have whiskers grown onto their sides, like down-feathers, as shown in Fig. 1. We refer to this surface as a “feathered” surface for this reason.

The reduction in SEY from a velvet surface was studied in our previous paper.13 Velvet is most efficient at reducing SEY for electron flux normal to the surface, for $\theta \approx 0$, θ
needed to overcome this limitation in SEY reduction for shallow angles. Regarding processes that can yield feather-like structures, volumetric chemical processes have been identified, which do cause velvet-like, fractal-like shapes to self-generate. The same chemical processes that grow large-diameter velvet onto the flat substrate may also be used to grow small-diameter velvet onto the sides of large-diameter velvet.

IV. MONTE CARLO CALCULATIONS OF SECONDARY ELECTRON EMISSION YIELD

We performed a Monte Carlo calculation of the SEY of feathered surface. We used the same simulation tool that was previously used to simulate SEY of the velvet and was benchmarked against analytical calculations. We simulated two surfaces: a velvet and a feathered surface, that is, velvet with one recursion, that is, a velvet surface onto whose whisker sides many, smaller whiskers were placed. An example of the feathered geometry is depicted in Fig. 1. We found that the results were improved (R is smaller) if the secondary whiskers are placed at a 45° angle upward, rather than downward or straight-out normal to the whisker surface.

The velvet parameters that we used for this calculation were as follows: the packing density $D = 0.04$ and the aspect ratio $A = 80$, which correspond to a dimensionless parameter $u = \frac{A}{D} = 2$. For these parameters, a reduction of 0.2 $< R < 0.5$ is expected for velvet. The small whiskers that were placed onto the sides of the big whiskers were $80 \times$ smaller. They have the same $D = 4\%$, with $A = 80 \cdot \sqrt{2}$, and were pointed upward at a 45° angle. Note that the radial extent of the secondary whiskers is therefore equal to the radius of the primary whiskers.

We numerically simulated the emission of secondary electrons by using the Monte Carlo method, initializing

![Image](image-url)
many particles and allowing them to follow ballistic, straight-line trajectories until they interact with the surface. The surface geometry was implemented as an isosurface, a specially designed function of space that gives correct feathered structure. The SEY of a particle interacting with a flat surface was assumed to follow the empirical model of Scholtz

\[
\gamma(E_p, \theta) = \gamma_{max}(\theta) \times \exp \left[- \frac{\left(\ln \left(\frac{E_p}{E_{max}(\theta)} \right) \right)^2}{\sqrt{2\sigma}} \right].
\]

For parameters in the model \(\gamma_{max}(\theta), E_p, E_{max}(\theta), \sigma\), we used those of graphite, assuming the structures are carbon based. We initialized the primary electrons with energy of 50 eV, 200 eV, or 1000 eV. True secondary electrons, elastically scattered electrons, and inelastically scattered electrons were taken into consideration. At this energy, 2.3% of secondary electrons, elastically scattered electrons, and inelastically scattered electrons are emitted with velocity in the upward direction and escape. Figure 1(c), when the primary incidence angle is shallow, primary electrons hit velvet whiskers very close to their tops, and nearly half of the secondary electrons are emitted with velocity in the upward direction and escape. As depicted in Fig. 1(d), primary electrons incident with shallow angles hit feathered whiskers very close to the tops, but SEE is suppressed by the secondary whiskers. The local angle of incidence on secondary whiskers ranges from 45° to 90° dependent on impact parameter to the primary whisker relative to the center of the primary whisker, so we have conservatively assumed that the SEY from the sides is reduced by the worst factor expected for the secondary velvet, one half, \(\gamma = \gamma_{tops} + \gamma_{sides} / 2 + \gamma_{bottom}\).

The result for \(u = 4\) with the SEY from the sides of the whisker reduced by half is included to explain the other interesting observation for shallow incidence angles (\(\theta \approx 90^\circ\)) that shows SEY reduction in the feathered case. Indeed, the feathered geometry out-performs an infinitely long velvet case, that of \(u = \infty\) in this regime. This is because, as depicted in Fig. 1(c), when the primary incidence angle is shallow, primary electrons hit velvet whiskers very close to their tops, and nearly half of the secondary electrons are emitted with velocity in the upward direction and escape. As depicted in Fig. 1(d), primary electrons incident with shallow angles hit feathered whiskers very close to the tops, but SEE is suppressed by the secondary whiskers. The local angle of incidence on secondary whiskers ranges from 45° to 90° dependent on impact parameter to the primary whisker relative to the center of the primary whisker, so we have conservatively assumed that the SEY from the sides is reduced by the worst factor expected for the secondary velvet, one half, \(\gamma = \gamma_{tops} + \gamma_{sides} / 2 + \gamma_{bottom}\).

These results indicate that the SEY from a surface can be suppressed by adding a feathered structure to the surface. Furthermore, we speculate that these results can be generalized to other fractal-like shapes, which consist of surfaces that have been scaled down and tiled onto themselves.

VI. DEPENDENCIES OF THE SEY ON THE FEATHER PARAMETERS

To determine the effect of angles of secondary whiskers on SEY, we performed simulations of the SEY for three

![Image of curves showing SEY reduction factor vs primary angle of incidence for different feathered geometries.](image-url)
different feather geometries. These feathers had secondary whiskers extending one primary-whisker-radius from the primary whisker surface, so the total effective whisker radius is the same for each case, but different angles from normal to the side of the primary whisker. These SEY curves are depicted in Fig. 3. The 45° case has been already discussed in Sec. VI.

The 20° feather is uniformly less effective at reducing SEY than the 45° feather.

The 70° case shows a very interesting feature: At primary angles of incidence of 20°, this feather suppresses SEY more effectively than the previous case. This can be understood by considering that, at this primary angle of incidence, primary electrons are incident on secondary whiskers almost normally and therefore are maximally suppressed.

We also simulated SEY from the same feather discussed in Sec. VI for three different primary electron energies. The three cases are depicted in Fig. 4. Over a range of energies spanning a factor of 20, we find that the SEY suppression varies less than 30%. This small variation with energy is only due to the change in the number of elastically and inelastically scattered secondary electrons with energy. Elastically scattered secondary electrons produce tertiary electrons elsewhere in the structure.

The feather parameter space left to explore (primary whisker length, radius, and spacing, and secondary whisker length, radius, and spacing) is too large for adequate analysis in this article and is left for follow-up study. We expect that, as with velvet, the SEY reduction will improve with longer and thinner whiskers, but have some irreducible minimum value.

VII. CONCLUSIONS

We simulated and verified that the feathered structures can suppress SEY better than a velvet surface. A velvet surface with one recursion of smaller velvet whiskers grown onto the primary whisker sites looks like a down-feather, and so we refer to such surfaces as “feathered.” Such feathered surfaces are suitable for suppressing secondary electrons even for the shallow incident angle of primary electrons. Total SEY reduction factor in the range $R \approx 0.1$ for $\theta \approx 0$ and $R \approx 0.2$ for $\theta \approx 90^\circ$ can be achieved for feathered structure.

ACKNOWLEDGMENTS

The authors would like to thank Yevgeny Raitses, who attracted our attention to the SEY of the velvet. We would also like to thank Eugene Evans, who suggested representing geometry as an isosurface. This work was supported by Air Force Office of Scientific Research.