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Ionization, Plume Properties, and Performance
of Cylindrical Hall Thrusters

Kevin D. Diamant, James E. Pollard, Yevgeny Raitses, and Nathaniel J. Fisch

Abstract—It is shown experimentally that the cylindrical Hall
thruster (CHT) produces a highly ionized plasma flow with mass
utilization efficiencies greater than 100% due to generation of
multicharged ions. For the CHT employing geometries with and
without a short annular section, used to enhance ionization, plume
divergence reductions of approximately 25% were demonstrated
by running a cathode-keeper discharge along with the main
cathode–anode discharge. Thruster anode efficiencies varied from
approximately 15% to 35% over input powers from 70 to 220 W.
A 2-A keeper discharge resulted in an approximately 20% increase
in anode specific impulse for both geometries, and the specific
impulse for the case of no annular section was, on average, 13%
higher than that with the annular section. The multicharged
ion fraction increased with keeper current, and the quantity of
channel erosion products in the plume was correlated with that
of multicharged ions.

Index Terms—Charge state, Hall thruster, ion flux, perfor-
mance, plume.

I. INTRODUCTION

THE CONCEPT of operationally responsive access to
space is leading to increased interest in small low-power

spacecraft [1]. These severely mass- and power-limited space-
craft could benefit from the use of low-power electric propul-
sion for orbit maintenance. Hall thrusters may be an attractive
option due to their simplicity relative to ion thrusters and high
performance relative to cold gas or electrothermal thrusters.

Annular Hall thrusters have been extensively developed in
the power range from approximately 0.5 to 5 kW, with specific
impulses ranging typically from 1500 to 2000 s and total
efficiencies from 45% to 55% (see, e.g., [2]–[6]). A number
of methodologies are available for scaling Hall thrusters to
power levels below a few hundred watts while attempting to
preserve specific impulse and efficiency [7]–[12]. All face the
same challenges, created by the need to reduce channel size
in order to preserve ionization efficiency. Small size leads to
difficulty in generation of magnetic fields with appropriate
magnitude and topology and also to increased particle losses
to chamber walls, with consequent increases in electron trans-
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port, heating, erosion, and plume divergence [13], [14] and,
therefore, reduced efficiency, specific impulse, and life. With
a few exceptions (BHT-200 [8], KM-37 [13], SPT X-40 [14],
and SPT-20M6.1 [15]), anode efficiencies (i.e., thrust efficiency
calculated without accounting for propellant flow to a cathode)
for annular Hall thrusters operating below 200 W are less
than 40%.

Raitses et al. [16] developed a cylindrical Hall thruster
(CHT), combining the conventional annular design with the
simplicity and enhanced volume-to-surface-area ratio of the
end-Hall thruster (EHT). The CHT channel features an annular
region near the anode, followed by a cylindrical region. The
annular region was designed to facilitate ionization, with accel-
eration occurring mainly in the cylindrical region, where there
is no inner wall and, consequently, reduced particle losses [17],
[18]. As with the EHT [19], the magnetic field has substantial
axial as well as radial components, with a magnetic mirror in
the central portion of the channel. However, in contrast to the
EHT, plasma potential measurements in the CHT indicate that
the magnetic field lines form equipotential surfaces [18]. In
addition, the CHT channel is ceramic (boron nitride), while the
EHT channel consists largely of the metallic anode [19]. The
magnetic mirror in the CHT serves mainly to inhibit electrons
from entering the annular part of the channel [20]. The CHT
exhibits quiet operation [17] and high ionization efficiency
[21]. A 3-cm-diameter CHT achieved anode efficiencies from
20% to 27% at input powers from 90 to 185 W [22]. More
recently, it was found that, by “overrunning” the discharge
current (i.e., running a cathode-keeper discharge in addition to
the main discharge to the anode) in 2.6- and 3-cm-diameter
CHTs, plume divergence was reduced by 20%–30% and that
the ion energy distribution was shifted to higher energies [23].
Anode efficiencies of 33%–41% (not including power required
to overrun the discharge) at 50–175 W were measured with the
2.6-cm thruster [23].

In this paper, we present measurements of plume narrowing
and performance enhancement in the overrun current regime
for a 3-cm CHT and for the same thruster with the annular
portion removed (fully CHT or FCHT). The FCHT design was
introduced by Raitses and Fisch [24], and a 5.6-cm-diameter
version has been developed and studied by Shirasaki and Tahara
[25]. We will also present data on ion charge state and erosion
species in the plume.

II. EXPERIMENT

The 3-cm CHT (Fig. 1) has been described in detail else-
where [23], [26]. The FCHT is the same thruster, modified so
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Fig. 1. (a) CHT schematic. (b) 3-cm CHT.

that the inner channel wall ends flush with the downstream
face of the anode. In all cases, the two magnet coils were run
in what Smirnov, Raitses, and Fisch refer to as the “direct”
configuration, which produces an enhanced axial component of
the magnetic field at the outer wall and a stronger magnetic
mirror on the thruster axis [20]. Magnet currents were 2 A
except as noted. A commercial hollow cathode (Heatwave Labs
model HWPES-250) supplied electrons to the discharge and
plume. This cathode consists of a hollow tube with a barium-
impregnated porous tungsten emitter, enclosed by a keeper elec-
trode. As in [23], the overrun current regime was attained by
running a keeper discharge in addition to the main discharge to
the anode. The cathode-keeper exit aperture was located 54 mm
radially from the thruster centerline and 20 mm downstream
of the thruster exit plane. The angle between the thruster and
cathode axes was approximately 40◦. Xenon gas was supplied
to the anode and cathode by thermal mass flow controllers,
calibrated by timing the pressure rise in a 1-L volume. The
cathode flow rate was 0.2 mg/s in all cases. Testing occurred
in a 2.4-m-diameter × 9.8-m-long cryopump vacuum chamber.

Fig. 2. CHT ion flux at 250 V, 0.40 mg/s, and 50-cm radius for various keeper
currents.

During thruster operation at a total flow of 0.6 mg/s, chamber
pressure (corrected for xenon) was typically 9 × 10−7 torr.

The thruster was mounted on an inverted-pendulum-style
thrust stand, described in [27]. Ion flux was measured at 2◦

increments at a radius of 50 cm from the thruster exit plane
by a planar probe consisting of a 1.27-cm-diameter collec-
tor, surrounded by a 2.54-cm-outside-diameter 1.32-cm-inside-
diameter guard ring. Collector and guard ring were stainless
steel, and both were biased to −20 V with respect to ground.
Ion flux was integrated to determine the total beam current and
plume divergence. Plume divergence is defined as the half angle
containing 90% of the total ion current. The ion energy distribu-
tion with respect to ground was measured at 50-cm radius with a
retarding potential analyzer, described in [28]. Ion charge state
and erosion products were detected, also at 50-cm radius, with
a compact time-of-flight spectrometer, described in [29].

Measurement uncertainties are estimated to be ±1◦ for plume
divergence, ±5% for specific impulse, and ±10% for efficiency.

III. RESULTS AND DISCUSSION

Fig. 2 shows the ion current density profiles at various keeper
currents for the CHT at a main discharge voltage of 250 V and
anode flow rate of 0.40 mg/s (discharge currents are typically
0.49, 0.51, and 0.53–0.54 A for keeper currents of 0–1, 1.5,
and 2–3 A, respectively). Fig. 3 shows plume divergence for
the CHT and FCHT at various operating points. These figures
confirm the substantial plume narrowing reported in [23] for
the CHT and demonstrate that the same effect is present in the
FCHT. Plume divergence decreased from an average of 71◦,
with no keeper current, to 55◦ at 2 A and 53◦ at 3 A. Fig. 4
shows that a keeper current of 2 A caused CHT primary ion
peaks to shift to higher energies, and reduced the number of
primary ions at high angles, in agreement with [23]. The ion
energy shift was correlated with a shift in the cathode floating
potential from about 12–14 V below ground to 1–3 V below
ground, equivalent to roughly one-half to two-thirds of the ion
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Fig. 3. Plume divergence.

Fig. 4. CHT ion energy distribution at 50-cm radius, 250 V, and 0.40 mg/s.
Peak center voltages are listed in parentheses in the legend.

energy shift. Fig. 5 shows the CHT running with and without
a keeper discharge of 2 A. The keeper discharge affected the
appearance of the plume (more conical) and caused the cathode
to transition from plume mode to spot mode. The plume-
to-spot-mode transition is associated primarily with increased
plasma density inside the cathode [30] and reduced voltage
between the cathode and the external electron collector [31],
in this case the ion beam. This latter characteristic was evident
in the aforementioned shift of cathode floating potential. An
explanation for the correlation between cathode plasma density
and the full ion energy shift, as well as plume narrowing, is
not yet available. Granstedt et al. [32] used a hot filament
cathode instead of a hollow cathode and showed that the CHT
plume narrowing results from increasing the heating current to a
filament cathode beyond that necessary to sustain the discharge,
indicating that cathode electron emission capacity is the critical

Fig. 5. CHT firing: 250 V and 0.40 mg/s. (a) Keeper off. (b) Keeper 2 A.

factor. According to the study in [32], the shift of the ion energy
distribution to higher energies with the keeper current is due to
ion production in the plasma region at higher potential.

The CHT and FCHT have similar anode efficiencies (Fig. 6),
and for both thrusters, with efficiency improvement created by
the narrower, more energetic plume was offset by the power
consumed by the keeper discharge (keeper voltage was typi-
cally 10–12 V at keeper currents from 1 to 3 A). Presumably, a
cathode that is capable of generating adequate plasma density
without a supplemental discharge would achieve the higher
efficiencies shown by the open symbols in Fig. 6. Fig. 7 shows
the benefit of the keeper discharge to CHT and FCHT anode
specific impulse, with an average gain of 21% between 0 and
2 A. FCHT specific impulse was, on average, 13% higher than
that of the CHT at keeper currents of 0 and 2 A. The possibility
of thrust generation by the cathode was investigated by running
it alone with a 2-A keeper discharge. Cathode thrust was
below the resolution of the thrust stand (0.1 mN). Furthermore,
the total ion current from the cathode was measured to be
approximately 1% of the thruster beam current, and no ions
were detected at energies above 20 V, indicating that cathode
thrust was on the order of 0.01 mN (approximately 0.2% of
typical CHT thrust).
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Fig. 6. Anode efficiency, excluding magnet power. CHT: 150–300 V,
0.28–0.40 mg/s. FCHT: 200–300 V, 0.40 mg/s. Filled symbols include keeper
power in calculation of efficiency; open symbols do not.

Fig. 7. Anode specific impulse at 0.40 mg/s.

Fig. 8 shows that the mass utilization (ratio of beam current
to anode mass flow rate expressed as an equivalent current as-
suming 100% single ionization) and current utilization (ratio of
beam current to discharge current) efficiencies for both thrusters
were weakly dependent on keeper current and discharge voltage
and that mass utilization efficiencies were above 100%. Mass
utilization efficiencies were approximately 20% higher for the
FCHT, but current utilizations were similar for both thrusters
due to the roughly 20% larger discharge current of the FCHT.
Reference [33] reported similar mass utilization efficiencies for
a 2.6-cm-diameter CHT and presented evidence indicating that
ingestion of cathode flow was not the cause. In this paper, as-
suming spherical expansion of the cathode flow from the keeper
aperture results in an estimated neutral density at the thruster
exit plane of about ten times the vacuum chamber background,

Fig. 8. Mass and current utilization efficiencies at 0.40 mg/s.

Fig. 9. CHT xenon charge state and erosion products at 50-cm radius, 250 V,
0.40 mg/s, 40◦ off centerline, and 223-V energy-to-charge ratio.

leading to a propellant ingestion rate that is approximately 1%
of the anode flow rate.

An explanation for high mass utilization in the CHT is
provided by the data in Figs. 9 and 10, which show significant
populations of multiply charged species at close to the primary
ion energy. Reference [34] suggests that, due to the equipoten-
tiality of magnetic field surfaces, ions borne in the near-axis
region remain at low energy and are trapped by an ambipolar
potential hill that develops in the cylindrical portion due to
focusing of fast ions. The increased residence time (relative to
conventional annular thrusters) allows the formation of higher
charge states. This mechanism is supported by the data in
Fig. 11, which show that the fraction of multiply charged ions
increased with decreasing energy-to-charge ratio. Reference
[34] also suggests that the multicharged ions could erode the
central ceramic piece, and indeed, Fig. 9 shows that the quantity
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Fig. 10. CHT xenon charge state and erosion products at 50-cm radius, 2-A
keeper current, 250 V, 0.40 mg/s, and 223-V energy-to-charge ratio.

Fig. 11. CHT xenon charge state at 50-cm radius, 2-A keeper current, 250 V,
0.40 mg/s, and 30◦ off centerline.

of B+ and N+ (from the BN ceramic) in the plume scaled
with that of the multicharged Xe. Furthermore, the qualitative
similarity between the angular distributions of B+, N+, and
multicharged Xe (Fig. 10) suggests that they originate from
a similar region. The data in Fig. 8 suggest that the number
of multiply charged ions is greater in the FCHT, which could
account for its larger specific impulse.

Note that, with the same thruster parameters, the keeper
current increases the discharge current. This result demon-
strates that, in steady-state operation of a thruster with a given
geometry, the thruster discharge current is uniquely determined
not only by the standard operating parameters such as the
discharge voltage, gas flow rate, and magnetic field but also by
the electron supply from the cathode [23]. The results shown
in Figs. 8 and 9 may provide insight into this interesting result.
Increasing the keeper current increases the quantity of multiply
charged ions but reduces the fraction of single charged ions

(Fig. 9). As a result, the keeper current has a very mild influence
on beam current (mass utilization, Fig. 8). Because the current
utilization drops slightly with increasing keeper current, the
increase of the discharge current with the keeper current is
mostly due to increased electron mobility to the anode. A much
larger effect on discharge current was observed by changing
the CHT to the FCHT configuration (Fig. 8). However, the
FCHT current utilization is about the same as the CHT. This
result may imply that the production of multiply charged ions
is responsible for the observed increase of the discharge current
in the FCHT.

IV. CONCLUSION

With its larger volume-to-surface-area ratio and simpler
magnetic circuit, the CHT may possess advantages over con-
ventional annular designs when scaling to low power. The
CHT is known to produce a highly ionized plasma flow with
mass utilization efficiency greater than 100%. In this paper,
we have demonstrated that unusually high mass utilization is
due to multicharged ions formed in the thruster discharge. The
presence of multicharged ions was found to be correlated with
that of channel erosion products. Finally, we also verified that
the effect of running a keeper discharge in addition to the
anode discharge, previously reported for the CHT, exists also
for a modified geometry (FCHT) for which the inner wall ends
flush with the anode. FCHT efficiency was similar to that of
the CHT, but specific impulse was higher, possibly due to the
increased presence of multicharged ions. It would be interesting
to investigate CHT operation on a gas that is more difficult to
ionize (e.g., Kr) to observe the effect of (presumably) reduced
multicharged ion production.
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