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The oscillation behavior described by Tang et al. [Phys. Plasmas 19, 073519 (2012)] differs too

greatly from previous experimental and numerical studies to claim observation of the same

phenomenon. Most significantly, the rotation velocity by Tang et al. [Phys. Plasmas 19, 073519

(2012)] is three orders of magnitude larger than that of typical “rotating spoke” phenomena.

Several physical and numerical considerations are presented to more accurately understand the

numerical results of Tang et al. [Phys. Plasmas 19, 073519 (2012)] in light of previous studies.
VC 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4773895]

Oscillations are an important aspect of Hall thruster

behavior as they influence cross-field electron transport, and

correspondingly, thruster efficiency. The “rotating spoke,”

originally observed by Janes and Lowder1 in 1966, has

attracted recent interest in both the cylindrical2–5 and annu-

lar6,7 configurations of the Hall thruster. A recent paper by

Tang et al.8 presents numerical studies of an azimuthally

rotating electron density perturbation which is claimed to be

the rotating spoke oscillation. In this Comment, we address

two features of the numerical study in Ref. 8. First, the rota-

tion speed and frequency are too large to be described as the

rotating spoke without further justification. Experimental

observations of the rotating spoke are in the kHz range,

whereas the numerical results in Tang et al.8 describe a

12.5 MHz oscillation. Second, the simulation results fall

short of modeling self-sustained Hall thruster operation due

to the lack of an electron source and the short time duration.

The so-called “rotating spoke” is a low-frequency azi-

muthal oscillation observed in both cylindrical and annular

Hall thrusters.1–3,6,7,9 It was originally observed using azimu-

thally separated electrostatic probes1 and more recently

detected using high-speed camera imaging.2,3,6 Experiments

have operated across a variety of thruster configurations,

sizes, and operating parameters including magnetic field ge-

ometry, gas type and flow rate, and discharge voltage (see

Ref. 6, for a parametric study in the annular Hall thruster ge-

ometry). The experimentally observed rotation velocity has

been on the order of 103 m=s, ranging from 500 m/s in Ref. 6

to 7� 103 m=s in Ref. 1. In contrast, Tang et al.8 observe a

rotation speed of 106 m=s—three orders of magnitude larger

than the experimental observations. The large discrepancy in

rotation speed and frequency requires additional justification

to be described as the rotating spoke instead of oscillations

more commonly observed in the MHz range.10–16

One reason for classifying the observed rotation in Ref.

8 appears to be the difference between the azimuthal rotation

speed and the E�B drift speed. The 106 m=s rotation in

Tang et al.8 is 37% of the E�B speed with B¼ 175 Gauss

and E¼ 470 V/cm. For comparison, Ellison et al. observe a

2� 103 m=s rotation which is 10% of the E�B speed using

B¼ 850 Gauss and E¼ 20 V/cm. To rule out mere E�B

rotation, the location where the electric field is measured is

important, and it is unclear from Figure 4 in Ref. 8 that

470 V/cm is an appropriate estimate of the electric field near

the electron cloud. Also, without a rigorous understanding of

the rotating spoke mechanism, the scaling with the E�B

speed is not the only relevant measure. The experimental

rotation speeds are also near the ion sound speed and ion

thermal velocity, for instance, which do not scale with the

E�B speed. The similar time scales have led several

authors to suggest the rotating spoke is related to ionization

phenomena,1,3,5,6,17 and until a better theoretical understand-

ing is established, it is important to keep these parameters in

mind.

Aside from the rotation speed discrepancy, the simula-

tion of Tang et al.8 lacks a cathode electron source and is

shorter than the time required for the initial plasma distribu-

tion to extinguish. Consequently, the observed rotation is not

likely to model the self-sustained plasma discharges studied

during experiments, but instead the transient relaxation of an

initial distribution of particles. The non-neutral plasma

observed in Ref. 8 cannot persist in steady state because

the excess charge will be forced to the electrodes by the per-

turbed electric field. A more rigorous study investigating

the rotating spoke should include several milliseconds of

sustained plasma to resolve ionization-relevant time scales

for evaluating the rotation mechanism.

Overall the present oscillation in Ref. 8 appears distinct

from the rotating spoke. For one, the variety of experimental

configurations in which the rotating spoke has been observed

have measured kHz-scale frequencies with rotation velocities

on the order of 103 m=s. In contrast, the 12.5 MHz rotation

observed by Tang et al. requires justification beyond com-

parison with the E�B speed to be connected with the rotat-

ing spoke. Further separating the numerical results from the

experimental observations is the absence of a self-sustained

discharge in the numerical model.
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