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Rayleigh instability in Hall thrusters
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Gradient-driven Rayleigh-type instabilities in Hall plasma thrusters are analyzed using linearized
two-fluid hydrodynamic equations. Necessary instability conditions and a general criterion for
stability of azimuthally propagating perturbations are derived. For a simplified model of the axial
distribution of parameters inside the thruster channel, the growth rate of an unstable wave, resonant
with the azimuthal electron flow, is obtained. The frequency and phase relations are related to the
results of experimental investigations of high-frequency oscillations in Hall thrusters200a
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I. INTRODUCTION E=-V¢ 2

Thg importance of plasma oscillations for the successfu!)oth for zeroth order and perturbed values of electric field
operation of Hall current plasma thrusters has been long rec-

. o . and plasma potential.

ognized(see, e.g., Ref.)1 These oscillations play an impor- . S . .
) . . . The ion motion is governed by fluid equations,

tant role in controlling the transport, conduction, and mobil-
ity in these devices, thus directly affecting their performance. i .
These oscillations are also important in matching the thruster  ——+V(viN;) =0, ()
to the power processing circuit.

The presence of plasma density and magnetic field gra- 55, | e -
dients is one of the main sources for plasma instabilfties. 5 T Vvi=E. (4)
However, despite general agreement with the early experi-
mental datd,these models do not explain all of the observa-The zeroth order solution is the axial flow of unmagnetized
tions, such as, for example, the presence of high-frequendgns being accelerated by the electric field in the channel
(MHz range plasma oscillations, which were recently de- according to
tected and characterizéd.

In this paper we study two-dimensional plasma pertur- v do, _® (5)
bations in a Hall current plasma thruster on the basis of two- °dx M ¢
fluid hydrodynamic theory. We focus on modes with purely i , i )
azimuthal propagation, suggested by the experimentaT,he Imeanzed. sy§tem for the small perturbations of ion den-
findings® These findings include plasma oscillations in theSIty @nd velocity is then written as follows:
presence of sharp gradients of plasma parameters, typical for an, . on;

n -
operating regimes of state-of-the art Hall thrustevse also —+vy—+n,V-0;=0, (6)
. T at X
include collisional terms for electrons. We show that
Rayleigh-type instability of azimuthal electrostatic waves ap- - . e -
pears. We determine the instability frequency and growth a_tl+U°¢9_xI:MEl' (7)
rate for a particular model of steady-state axial distribution
of parameters inside the thruster channel. We consider perturbations of all variables of the form

Il. THE MODEL A(r,t)=A(x)expliwt—ikyy).

Consider a Hall thruster with a cold two-component For the ion motion we can also use the assumption that the
plasma, consisting of ions and electrons immersed in thé#equency of the perturbations we consider is high enough
magnetic fieldB,, such that, on the scale of the device, compared to the ion flow velocity,<w/L, whereL is the
electrons are magnetized, while ions are unmagnetized, inhomogeneity length along the channel. Then we obtain the
following expression for the perturbed ion density in terms

pe<L<pi. @ of the perturbed electric field
We treat the annular channel of the thruster as flat and ne-
glect the channel curvature, as well as the axial component _ (9—Ex+ik E
of magnetic field and the changes of any variables in the eny Jx ey
radial direction, thus simplifying the problem to two- =W w2 8)
dimentional geometry. Limiting our study to quasielectro-
static waves, we have or in terms of potential perturbation according(®,
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eny 1 P ) © Qe>w, kyUg, dug/dX, ve. (19
n. ——
e oxz Y This condition allows the expression for electron velocities
The electron motion is governed by the similar set oft0 be simplified,
continuity and momentum equations, e lliw aqs Lik 1 ou ‘
) O iy ax T a8 @0
eNe) =0, (10)
e 11d¢ i&)'k Jri&) auo_k -
Fh .1 ) Oy L X QL yo EWI vl (21)
= — 2 (0 V)Ue=—| E+ EveXB —Vele. (11 e

whereo = (w—kyUp—ive). We can now substitute this into
In the zeroth order, assuming<(}, the electrons move in  the electron contlnwty equation, rewritten for harmonic elec-

the y direction with the drift velocity trostatic perturbations as
Eo n v 1 4n
Uo= —C =2, (12 Y likypy— Ao .
° Bo Ne= i(w—kyUg) tkyv IX an IX (22)

The linearized system for the small perturbations of electromhfar some vigorous algebra, eliminating terms of higher or-
density and velocity is written as follows: der thanO(w/€,) we obtain the following expression for

n an the electron density in terms of potential perturbation:

e - - [o]
W'F(Uo'V)ne'i' no(V~ve)+vexT=0, (13)

X €ny ( ( K2 2¢ ive

- n = —_— [ —
e - T m2l\ YT ax? w—KyUg
e (Fo V)Tt (B V)5 ; '

LM (Q 7 020 aZUO) 4)) (23)
e 1 . — —in—— .
=—M E1+ UeX B — Vele- (14) o=k | %X ng  gx2

Now we can substitute the obtained expressions for ion

The momentum equatio(ild) yields the following system and electron density perturbatiof® and(23) into Poisson’s

for the x andy components of the oscillating electron veloc-

ity perturbation: equation
_ ' e i VZp=4me(n—ne), (24)
Ho=kyg=ive)vx =10 == Qevy, (15 \which will yield the following equation for the perturbation
of the plasma potential:
) . dug e
I(w—kyuo—lVe)vy-f-UXW:—lkyEd)-i-Qevx. (16) pr: k2¢ ;2)i+ '2)e
. 2 202
Here we have introduced the electron gyrofrequefity ox? W Qe
=eBy/mc. We resolve this system to obtain the following 2 )
expressions fov, andv,: _ @pe Y¢ i nﬁ_ _‘9 Uo
" Q2 w— Kk Ugy WUo | %9x Ny gx2
i(w—kyup— 'Ve) +|k y e 5 ) )
_¢© wpe Ve d ¢
UX_E dug ' (17) > —w U y¢$ (25
— (0= kylo=ive)~ Qe Qe ol 9x*
If we make yet another assumption about the frequency
__E_(b e range of the oscillations, namely we consider that the fre-
UV_Q madx m guency of these oscillations is much greater than the lower

o hybrid frequency,
(0—kyUg—i Ve)zg_x_ i(w—kyUp—ive)Qeiky

. wgiﬂg 1/2 (26)
X . WZOHT| TS S|
ou +Q
02— (0—kyUg—ive)2— Qe | O, @piT e
e y IX : . N
then the equatioii25) is further simplified to
(o @ K d By
For typical Hall thruster operating conditions to satisfy —- k§¢— y—d)(ge—m —0_ _u20>

the condition(1), the applied magnetic field is of the order of X o=kyg | "Ax "N ox
10° G. The electron gyrofrequency in such a case is of the . 5
order of a few GHz and is substantially larger than frequen-  _ 've |9 d’ 2

! GH: tant » ki |= (27
cies of the oscillations we consider in our model, o—Kylg | gx?
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Ill. RAYLEIGH INSTABILITY where

In appropriate limits, Eq(27) reduces to some well-
known equations. First, consider the collisionless case, when A(X)= ( Qe In==——|.
Eq. (27) simplifies to
) 5 Equation(33) in certain cases may have, according to
"¢ K2 ky¢ i nﬁ_w ~0 (28) the oscillation theoren? a discrete set of eigenfunctions
fox Ny gx2 ' ¢, to which correspond eigenvalu&$" and hence fre-

. L . _ quencieso™M=kMuy(x,), only if
This equation is similar to the Rayleigh equation, well

known in the fluid dynamic&* A(X
y U= — 2 (34)
(92@ k.® (92\/ UO(XO) - UO(X)
2 k§¢ + v Y| = 0, (29 The exact criterion for the existence of the eigenfunction
IX w— kyVy &XZ g

¢™ cannot be determined without specifying the exact form
whereV, is the flow velocity in they direction and® is the  of the profile ofU(x). It is obvious at the same time that Eq.
so-called flow functiony=V®. It can be further analyzed (33) has no eigenfunctions ifA (x)/[ug(Xg) —Ug(X)]<0,
using the methodology, presented in Ref. 12. when the effective potentid) (x) forms not a “well” but a
Following? we treat(28) as an equation for the axial “hump.” For example, if U(x)=0, it is obvious that the
profile of electric potential perturbatio(x), with w andk,  resulting equatiorp” — k§¢=0 does not have a nonzero so-
being the free parameters. In slab geometry, perturbationstion with the specified boundary conditiof30).
can evolve both in space and in time. However, in the azi- Condition (34) is in fact an estimate, sufficient to the
muthally symmetric channel of a real Hall thruster, the azi-existence of the unstable solution. Without specifying the
muthally propagating perturbation has to be periodic in theexact form of axial distribution of parameters, it can be only
direction of propagation. Thereford;, can be only real, stated that the effective potential “well” it33), character-
while  can be complex, with its imaginary part representingized by U(x), should be deep and wide enough.
the growth rate of the unstable oscillations. Also, due to the  If we make an assumption that the set of eigenfunctions
periodic boundary conditions in thedirection, possible val- ¢(™ and eigenvaluek™ exists, we can show that the oscil-

ues ofk, must be limited to a discrete set. lations with the values ok, somewhat smaller thakd™ are
The boundary conditions fa$(x) can be chosen as unstable.

3 B Let us consider oscillations withk,=k™+ ok, w

(X)) =0,  $(x2)=0, (30 =k(Mugy(xo) +i Im w, where sk<k™, and Imw<kMuy(xo).

wherex, andx, represent the boundaries of the investigated ~ When we substitute these in(83), then we obtain

region. These conditions correspond to a firmly fixed value

of potential at the anode of the thruster and at the virtual |m wocgku(x)|u6(xo)|2J dx|p(x)|?|d(x0)| 2. (35)

cathode, i.e., magnetic surface going through the cathode

neutralizer. We therefore limit our case to perturbations, loSince we have assumed the requirement discussed above,

calized in the axial direction. that U(xo)>0, then the oscillations will be unstable, i.e.,
Using the Rayleigh theorefi,it can be shown that @ |m >0 only for sk<0.

=0, i.e., there will be no unstable oscillation, unless the fol-  We must note that for the wave, which satisfies the Ray-

lowing condition is met at some point=Xy: leigh necessary conditior82), both the numerator and the
5 denominator in(34) go to 0 at the resonant point=X,,
(Q im Bo_ ﬂ) —-0. (31)  therefore according to I'Hopitale rule
CIX " Ny  ox2
A(x) A’ (Xo)
The condition(31) is a necessary but not sufficient condition U(Xo):m == Uo(Xo) - (36)
for the inOstability to exist. X=X
To avoid singularity in Eq(28), the oscillations have to It was already noted, that the presence of the point,
be in resonance with the flow exactly at the point where theyhere the inhomogeneity factok(x) goes to zero is not
necessary instability condition is satisfied, i.e., sufficient for the flow to be unstable. Taking the form of Eq.
J B. 2u (33) into consideration_, it is .possible Fo assume that with the
Rew=k,Ug(Xo), (Qe_ n—2_ _0) =0. (32 increase ofU(x) the first eigenfunction appears at a zero
X Ng  gx2 eigenvaluk® and further increase & (x) will increase the

X=X
° value ofk®). It was shown already that unstable oscillations
To find the unstable oscillations, assume that the condishould havek<k(), therefore the appearance of tk€"

tion (32) is satisfied and that the unstable wave is in reso—=0 s the point of margina| Stab|||ty of the flow in the slab

nance with the flow, and then rewri{@8) as geometry.
2 We should take into account that the case we consider is
M_ 2 A(X) =0 (33 physically different from the classical problem now only by
ax2 77 Ug(Xg) = Uo(X) ' the more complicated form of the functioh(x) which now
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includes the gradients of plasma density and magnetic fielcsimilar to ones existing in Hall thrusters, and the Kelvin—
At the same time for the wave-like disturbance propagatingdelmholtz-type instability described below becomes a Ray-
azimuthally in the annular channel of the Hall thruster theleigh instability.

possible wave numbé, is limited to the set In the following'® we now introduce the new function
n ¢
kn:§1 n=1,2,..., lﬂ_ w—kyuo

whereR is the radius of the acceleration channel. This mean#or which (33) takes the form
that the existence of the zero eigenvaki®=0 is not suf-
ficient to allow an unstable azimuthal mode. The generai—x

instability condition on the functiotJ(x) therefore should d

d
(w— kyuo)zd—f> —KZ(w—kyUg) 2y

pe such that the first eigenvalue satisfies the following crite-  —k,(w—kyug)A(x) =0. (39
rlon: Now we solve(39) separately fox>0 andx<O0, using
n2 for simplicity the symmetrical boundary conditions:
kY>Ke=—. (37)
R? Y(x=a)=y(x=—a)=0.

Therefore, the instability conditiot84) is modified ac-  Then forx>0 we rewrite(39) as

cordingly to a2y
—- k2< 1+ ) =0, (40)
5 1 dx2 (l)_kUl
U(xo)>ki=—. (39
R therefore
Thus, for any parameter distribution and corresponding . 1z
function U(x) there will be a finite number of unstable =Cysinh k| 1+ ok, (a+Xx). (41)

modes, limited by the corresponding valuek§P. o o
Similarly, for x<<0 the solution is

. [ A 1/2
IV. KELVIN-HELMHOLTZ-TYPE INSTABILITY ¥=Cz S'”h_k( = w—kvz) |@=%. 42

Derivation of exact criterion for the appearance of the  From the continuity of the solution we immediately ob-
eigenfunctiond)(l) requires knowing the exact form of the tain for the CoeffICIent£1=C2, which we will drOp in fur-

function ther calculations, while integration of E¢B9) aroundx=0
yields the following matching condition fap:
A=l o d | By d°Ug te
(¥)={ Qezo Mo a2 (w—kuo(x))za =0. (43

—€
The profiles of plasma density and the electric field distribuWe now substitute our solution in(@?3)
tion inside the thruster channel are subject to numerous re- ’

search efforsand obtaining the exact solution is rather com- 5 A
plicated both theoreticalfyand experimentall{:1° (0=kog)™ 1+ w—kvy) O° ka| 1+ w—kv,
We consider therefore the simplest distribution of param-
eters inside the thruster channel, allowing us to find the un- +(w—kvy)? 1- )
stable mode, its frequency and growth rate. w—kv,
Let us consider the step-like distribution of all param-
eters, where at the resonant patgt=0 the drift velocityug X cosr{ka 1+ H:o_ (44)
is changing its value from; to v,, while w—kv,
0 By This i_s in fact the dispersiqn relation for the azimuthally
A(X):(Qeﬂlnn_o) propagating unstable mode with

U1+Uz
2

is changing fromA to — A throughA=0, so that the neces- w=k tl V=K3(vy—v1)2—2Ak(v,—v,). (45)

sary instability condition is satisfied &&= 0. In fluid dynam-

ics the instability of flow with a step-like transverse profile We have two modes here with the frequeney=k[ (v,

of velocity is well knowrt* and is customarily called +v,)/2], one of which is unstable with the growth rate

Kelvin—Helmholtz instability. A simplified case of such in- 13 5

stability without density and magnetic field gradients has 7~ 2k (vo—v1) 4 28K, ). (46)

been considered earlitt. When the velocity jump and the profile of the inhomo-
When the kinks in the drift velocity profile and the in- geneity parameteA(x) are smeared out, the obtained solu-

homogeneity factor are smeared out, the profiles becomion represents a wave which is in phase-ky(v,+v,)/2
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with the electron flow at the center point where the parametemodes has the phase velocity the same or close to the elec-
A(X) turns into 0, thus satisfying the necessary condition fortron drift velocity inside the channel for a wide range of

Rayleigh instability. thruster configurations and operating conditions. While there
are other theoretically predicted unstable waves in this band,
V. CONCLUSION the experimental characteristics indicate that the experimen-

The theoretical model presented here predicts that a .IIy observed wave is probably the Rayleigh-type instability

azimuthally propagating mode may become unstable if cer: iscussed in this paper.
tain conditions on the axial distribution of parameters inside

the thruster channel are met, most importantly when the pa’e‘CKNOWI‘EDGMENTS
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