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Gradient-driven Rayleigh-type instabilities in Hall plasma thrusters are analyzed using linearized
two-fluid hydrodynamic equations. Necessary instability conditions and a general criterion for
stability of azimuthally propagating perturbations are derived. For a simplified model of the axial
distribution of parameters inside the thruster channel, the growth rate of an unstable wave, resonant
with the azimuthal electron flow, is obtained. The frequency and phase relations are related to the
results of experimental investigations of high-frequency oscillations in Hall thrusters. ©2004
American Institute of Physics.@DOI: 10.1063/1.1647565#

I. INTRODUCTION

The importance of plasma oscillations for the successful
operation of Hall current plasma thrusters has been long rec-
ognized~see, e.g., Ref. 1!. These oscillations play an impor-
tant role in controlling the transport, conduction, and mobil-
ity in these devices, thus directly affecting their performance.
These oscillations are also important in matching the thruster
to the power processing circuit.

The presence of plasma density and magnetic field gra-
dients is one of the main sources for plasma instabilities.2,3

However, despite general agreement with the early experi-
mental data,4 these models do not explain all of the observa-
tions, such as, for example, the presence of high-frequency
~MHz range! plasma oscillations, which were recently de-
tected and characterized.5,6

In this paper we study two-dimensional plasma pertur-
bations in a Hall current plasma thruster on the basis of two-
fluid hydrodynamic theory. We focus on modes with purely
azimuthal propagation, suggested by the experimental
findings.5 These findings include plasma oscillations in the
presence of sharp gradients of plasma parameters, typical for
operating regimes of state-of-the art Hall thrusters.7 We also
include collisional terms for electrons. We show that
Rayleigh-type instability of azimuthal electrostatic waves ap-
pears. We determine the instability frequency and growth
rate for a particular model of steady-state axial distribution
of parameters inside the thruster channel.

II. THE MODEL

Consider a Hall thruster with a cold two-component
plasma, consisting of ions and electrons immersed in the
magnetic fieldBo , such that, on the scale of the device,
electrons are magnetized, while ions are unmagnetized,

re!L!r i . ~1!

We treat the annular channel of the thruster as flat and ne-
glect the channel curvature, as well as the axial component
of magnetic field and the changes of any variables in the
radial direction, thus simplifying the problem to two-
dimentional geometry. Limiting our study to quasielectro-
static waves, we have

EW 52¹f ~2!

both for zeroth order and perturbed values of electric field
and plasma potential.

The ion motion is governed by fluid equations,
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The zeroth order solution is the axial flow of unmagnetized
ions being accelerated by the electric field in the channel
according to

vo

dvo

dx
5

e

M
Eo . ~5!

The linearized system for the small perturbations of ion den-
sity and velocity is then written as follows:

]ni

]t
1vW o

]ni

]x
1no¹•vW i50, ~6!

]vW i

]t
1vo

]vW i

]x
5

e

M
EW 1 . ~7!

We consider perturbations of all variables of the form

A~rW,t !5A~x!exp~ ivt2 ikyy!.

For the ion motion we can also use the assumption that the
frequency of the perturbations we consider is high enough
compared to the ion flow velocityv0!v/L, whereL is the
inhomogeneity length along the channel. Then we obtain the
following expression for the perturbed ion density in terms
of the perturbed electric field

ni5
en0
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]Ex

]x
1 ikyEy

v2
, ~8!

or in terms of potential perturbation according to~2!,

PHYSICS OF PLASMAS VOLUME 11, NUMBER 4 APRIL 2004

13791070-664X/2004/11(4)/1379/5/$22.00 © 2004 American Institute of Physics

Downloaded 26 Jun 2004 to 140.180.167.124. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp

http://dx.doi.org/10.1063/1.1647565


ni5
en0

M

1

v2 S ]2f

]x2
2ky

2f D . ~9!

The electron motion is governed by the similar set of
continuity and momentum equations,
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1¹~vW eNe!50, ~10!
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c
vW e3BW D2nevW e . ~11!

In the zeroth order, assumingne!Ve the electrons move in
the ŷ direction with the drift velocity

uo52c
Eo

Bo
. ~12!

The linearized system for the small perturbations of electron
density and velocity is written as follows:
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50, ~13!
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The momentum equation~14! yields the following system
for the x̂ and ŷ components of the oscillating electron veloc-
ity perturbation:

i ~v2kyu02 ine!vx5
e

m
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2Vevy , ~15!
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Here we have introduced the electron gyrofrequencyVe

5eB0 /mc. We resolve this system to obtain the following
expressions forvx andvy :
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~18!

For typical Hall thruster operating conditions to satisfy
the condition~1!, the applied magnetic field is of the order of
102 G. The electron gyrofrequency in such a case is of the
order of a few GHz and is substantially larger than frequen-
cies of the oscillations we consider in our model,

Ve@v, kyu0 , ]u0 /]x, ne . ~19!

This condition allows the expression for electron velocities
to be simplified,
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wherev̂5(v2kyu02 ine). We can now substitute this into
the electron continuity equation, rewritten for harmonic elec-
trostatic perturbations as
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After some vigorous algebra, eliminating terms of higher or-
der thanO(v/Ve) we obtain the following expression for
the electron density in terms of potential perturbation:
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Now we can substitute the obtained expressions for ion
and electron density perturbations~9! and~23! into Poisson’s
equation

¹2f54pe~ni2ne!, ~24!

which will yield the following equation for the perturbation
of the plasma potential:
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If we make yet another assumption about the frequency
range of the oscillations, namely we consider that the fre-
quency of these oscillations is much greater than the lower
hybrid frequency,
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then the equation~25! is further simplified to
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III. RAYLEIGH INSTABILITY

In appropriate limits, Eq.~27! reduces to some well-
known equations. First, consider the collisionless case, when
Eq. ~27! simplifies to

]2f

]x2
2ky

2f2
kyf

v2kyu0
S Ve

]

]x
ln
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n0
2

]2u0

]x2 D 50. ~28!

This equation is similar to the Rayleigh equation, well
known in the fluid dynamics:11

]2F

]x2
2ky

2F1
kyF

v2kyVy
S ]2Vy

]x2 D 50, ~29!

whereVy is the flow velocity in theŷ direction andF is the
so-called flow function,V5¹F. It can be further analyzed
using the methodology, presented in Ref. 12.

Following,12 we treat~28! as an equation for the axial
profile of electric potential perturbationf(x), with v andky

being the free parameters. In slab geometry, perturbations
can evolve both in space and in time. However, in the azi-
muthally symmetric channel of a real Hall thruster, the azi-
muthally propagating perturbation has to be periodic in the
direction of propagation. Therefore,ky can be only real,
while v can be complex, with its imaginary part representing
the growth rate of the unstable oscillations. Also, due to the
periodic boundary conditions in theŷ direction, possible val-
ues ofky must be limited to a discrete set.

The boundary conditions forf(x) can be chosen as

f~x1!50, f~x2!50, ~30!

wherex1 andx2 represent the boundaries of the investigated
region. These conditions correspond to a firmly fixed value
of potential at the anode of the thruster and at the virtual
cathode, i.e., magnetic surface going through the cathode
neutralizer. We therefore limit our case to perturbations, lo-
calized in the axial direction.

Using the Rayleigh theorem,13 it can be shown that Imv
50, i.e., there will be no unstable oscillation, unless the fol-
lowing condition is met at some pointx5x0 :

S Ve

]

]x
ln
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n0
2

]2u0

]x2 D 50. ~31!

The condition~31! is a necessary but not sufficient condition
for the in0stability to exist.

To avoid singularity in Eq.~28!, the oscillations have to
be in resonance with the flow exactly at the point where the
necessary instability condition is satisfied, i.e.,

Rev5kyu0~x0!, S Ve

]

]x
ln
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n0
2

]2u0

]x2 D U
x5x0

50. ~32!

To find the unstable oscillations, assume that the condi-
tion ~32! is satisfied and that the unstable wave is in reso-
nance with the flow, and then rewrite~28! as

]2f

]x2
2ky

2f1
L~x!

u0~x0!2u0~x!
f50, ~33!

where

L~x!5S Ve

]
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ln
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]x2 D .

Equation~33! in certain cases may have, according to
the oscillation theorem,12 a discrete set of eigenfunctions
f (n), to which correspond eigenvaluesk(n) and hence fre-
quenciesv (n)5k(n)u0(x0), only if

U~x!5
L~x!

u0~x0!2u0~x!
.0. ~34!

The exact criterion for the existence of the eigenfunction
f (n) cannot be determined without specifying the exact form
of the profile ofU(x). It is obvious at the same time that Eq.
~33! has no eigenfunctions ifL(x)/@u0(x0)2u0(x)#,0,
when the effective potentialU(x) forms not a ‘‘well’’ but a
‘‘hump.’’ For example, if U(x)[0, it is obvious that the
resulting equationf92ky

2f50 does not have a nonzero so-
lution with the specified boundary conditions~30!.

Condition ~34! is in fact an estimate, sufficient to the
existence of the unstable solution. Without specifying the
exact form of axial distribution of parameters, it can be only
stated that the effective potential ‘‘well’’ in~33!, character-
ized byU(x), should be deep and wide enough.

If we make an assumption that the set of eigenfunctions
f (n) and eigenvaluesk(n) exists, we can show that the oscil-
lations with the values ofky somewhat smaller thank(n) are
unstable.

Let us consider oscillations withky5k(n)1dk, v
5k(n)u0(x0)1 i Im v, wheredk!k(n), and Imv!k(n)u0(x0).

When we substitute these into~33!, then we obtain

Im v}dkU~x!uu08~x0!u2E dxuf~x!u2uf~x0!u22. ~35!

Since we have assumed the requirement discussed above,
that U(x0).0, then the oscillations will be unstable, i.e.,
Im v.0 only for dk,0.

We must note that for the wave, which satisfies the Ray-
leigh necessary conditions~32!, both the numerator and the
denominator in~34! go to 0 at the resonant pointx5x0 ,
therefore according to l’Hopitale rule

U~x0!5
L~x!

u0~x0!2u0~x!
U

x5x0

52
L8~x0!

u0~x0!
. ~36!

It was already noted, that the presence of the point,
where the inhomogeneity factorL(x) goes to zero is not
sufficient for the flow to be unstable. Taking the form of Eq.
~33! into consideration, it is possible to assume that with the
increase ofU(x) the first eigenfunction appears at a zero
eigenvaluek(1) and further increase ofU(x) will increase the
value ofk(1). It was shown already that unstable oscillations
should havek,k( i ), therefore the appearance of thek(1)

50 is the point of marginal stability of the flow in the slab
geometry.

We should take into account that the case we consider is
physically different from the classical problem now only by
the more complicated form of the functionL(x) which now
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includes the gradients of plasma density and magnetic field.
At the same time for the wave-like disturbance propagating
azimuthally in the annular channel of the Hall thruster the
possible wave numberky is limited to the set

kn5
n

R
, n51,2,...,

whereR is the radius of the acceleration channel. This means
that the existence of the zero eigenvaluek(1)50 is not suf-
ficient to allow an unstable azimuthal mode. The general
instability condition on the functionU(x) therefore should
be such that the first eigenvalue satisfies the following crite-
rion:

k~1!.kn
25

n2

R2
. ~37!

Therefore, the instability condition~34! is modified ac-
cordingly to

U~x0!.k1
25

1

R2
. ~38!

Thus, for any parameter distribution and corresponding
function U(x) there will be a finite number of unstable
modes, limited by the corresponding value ofk(n).

IV. KELVIN–HELMHOLTZ-TYPE INSTABILITY

Derivation of exact criterion for the appearance of the
eigenfunctionf (1) requires knowing the exact form of the
function

L~x!5S Ve

]

]x
ln

B0

n0
2

]2u0

]x2 D .

The profiles of plasma density and the electric field distribu-
tion inside the thruster channel are subject to numerous re-
search efforts8 and obtaining the exact solution is rather com-
plicated both theoretically9 and experimentally.7,10

We consider therefore the simplest distribution of param-
eters inside the thruster channel, allowing us to find the un-
stable mode, its frequency and growth rate.

Let us consider the step-like distribution of all param-
eters, where at the resonant pointx050 the drift velocityu0

is changing its value fromv1 to v2 , while

A~x!5S Ve

]

]x
ln

B0

n0
D

is changing fromA to 2A throughA50, so that the neces-
sary instability condition is satisfied atx50. In fluid dynam-
ics the instability of flow with a step-like transverse profile
of velocity is well known14 and is customarily called
Kelvin–Helmholtz instability. A simplified case of such in-
stability without density and magnetic field gradients has
been considered earlier.15

When the kinks in the drift velocity profile and the in-
homogeneity factor are smeared out, the profiles become

similar to ones existing in Hall thrusters, and the Kelvin–
Helmholtz-type instability described below becomes a Ray-
leigh instability.

In the following16 we now introduce the new function

c5
f

v2kyu0

for which ~33! takes the form

d

dx S ~v2kyu0!2
dc

dx D2ky
2~v2kyu0!2c

2ky~v2kyu0!A~x!c50. ~39!

Now we solve~39! separately forx.0 andx,0, using
for simplicity the symmetrical boundary conditions:

c~x5a!5c~x52a!50.

Then forx.0 we rewrite~39! as

d2c

dx2
2k2S 11

A

v2kv1
Dc50, ~40!

therefore

c5C1 sinhFkS 11
A

v2kv1
D 1/2G~a1x!. ~41!

Similarly, for x,0 the solution is

c5C2 sinhFkS 12
A

v2kv2
D 1/2G~a2x!. ~42!

From the continuity of the solution we immediately ob-
tain for the coefficientsC15C2 , which we will drop in fur-
ther calculations, while integration of Eq.~39! aroundx50
yields the following matching condition forc:

~v2ku0~x!!2
dc

dxU
2e

1e

50. ~43!

We now substitute our solution into~43!,

~v2kv1!2S 11
A

v2kv1
D coshFkaS 11

A

v2kv1
D G

1~v2kv2!2S 12
A

v2kv2
D

3coshFkaS 11
A

v2kv2
D G50. ~44!

This is in fact the dispersion relation for the azimuthally
propagating unstable mode with

v5k
v11v2

2
6

1

2
A2k2~v22v1!222Ak~v22v1!. ~45!

We have two modes here with the frequencyv5k@(v1

1v2)/2#, one of which is unstable with the growth rate

g5 1
2Ak2~v22v1!212Ak~v22v1!. ~46!

When the velocity jump and the profile of the inhomo-
geneity parameterA(x) are smeared out, the obtained solu-
tion represents a wave which is in phasev5ky(v11v2)/2
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with the electron flow at the center point where the parameter
L(x) turns into 0, thus satisfying the necessary condition for
Rayleigh instability.

V. CONCLUSION

The theoretical model presented here predicts that an
azimuthally propagating mode may become unstable if cer-
tain conditions on the axial distribution of parameters inside
the thruster channel are met, most importantly when the pa-
rameter

S Ve

]

]x
ln

B0

n0
2

]2u0

]x2 D
is equal to 0 at some point inside the channel. This instability
is predicted to be in resonance with the azimuthal electron
flow at the same point the instability condition is satisfied.
The derived instability condition applied to azimuthally sym-
metric geometry of Hall thruster shows that several modes
with multiple frequencies can be unstable.

For a kilowatt-range Hall thruster~SPT-100 class or
similar! typical values of the applied magnetic and electric
fields are 200 G and 100 V/cm correspondingly. The electron
drift velocities in this type of thrusters are therefore of the
order of 106 m/s and the frequency of the unstable waves
should be in the 1–10 MHz range. Given the characteristic
plasma frequencies for such discharges~see Ref. 3! this vali-
dates the assumptions on the frequency of the wave, made
during the derivation of the dispersion relation.

Further progress in the theoretical analysis of this insta-
bility is possible only after a detailed and accurate model of
steady state processes inside Hall thruster channel is
derived—a task beyond the scope of this paper.

Most importantly, experimental studies have indicated
the presence of the purely azimuthal high-frequency (f
;5 – 50 MHz) waves inside the channel of the laboratory
Hall thruster.5 In certain operating regimes waves with mul-
tiple frequencies~harmonics! were detected.5,6 Experimental
studies of the steady-state distribution of plasma parameters7

preliminarily suggest, that the detected high-frequency

modes has the phase velocity the same or close to the elec-
tron drift velocity inside the channel for a wide range of
thruster configurations and operating conditions. While there
are other theoretically predicted unstable waves in this band,
the experimental characteristics indicate that the experimen-
tally observed wave is probably the Rayleigh-type instability
discussed in this paper.
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