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Recent analytical studies and particle-in-cell simulations suggested that the electron velocity
distribution function in E�B discharge of annular geometry Hall thrusters is non-Maxwellian and
anisotropic. The average kinetic energy of electron motion in the direction parallel to the thruster
channel walls �across the magnetic field� is several times larger than that in the direction normal to
the walls. Electrons are stratified into several groups depending on their origin �e.g., plasma or
channel walls� and confinement �e.g., lost on the walls or trapped in the plasma�. Practical analytical
formulas are derived for the plasma flux to the wall, secondary electron fluxes, plasma potential, and
electron cross-field conductivity. Calculations based on these formulas fairly agree with the results
of numerical simulations. The self-consistent analysis demonstrates that the elastic electron
scattering in collisions with atoms and ions plays a key role in formation of the electron velocity
distribution function and the plasma potential with respect to the walls. It is shown that the
secondary electron emission from the walls may significantly enhance the electron conductivity
across the magnetic field but only weakly affects the insulating properties of the near-wall sheath.
Such self-consistent decoupling between the secondary electron emission effects on the electron
energy losses and the electron cross-field transport is currently not captured by the existing fluid and
hybrid models of Hall thrusters. © 2007 American Institute of Physics. �DOI: 10.1063/1.2709865�

I. INTRODUCTION

There is reliable experimental evidence of the wall ma-
terial effect on operation of a Hall thruster.1,2 Figure 1 shows
the dependence of the electron temperature on discharge
voltage for different wall materials. The existing fluid theo-
ries explain this effect invoking a strong secondary electron
emission �SEE� from the channel walls. The SEE is predicted
to weaken insulating properties of the near-wall sheaths and,
thereby �i� to cause cooling of plasma electrons and �ii� to
enhance the electron conductivity across the magnetic field.
From a practical standpoint, a strong SEE from the channel
walls is expected to cause additional inefficiencies due to
enhanced power losses in the thruster discharge and intense
heating of the channel walls by almost thermal electron
fluxes from the plasma.3 Moreover, because the SEE leads to
lower values of the sheath potential drop, ion-induced ero-
sion of the channel walls can be also affected. Although
these predictions can be certainly applied for plasmas with a
Maxwellian electron velocity distribution function �EVDF�,
there is no consensus between the existing fluid2,4–7 and ki-
netic models8,9 on how strong the SEE effects on the thruster
plasma are. According to kinetic simulations,8–12 the EVDF
in a collisionless plasma is depleted at high energies due to
electron-wall losses. Under such conditions, the electron
losses to the walls can be hundreds of times smaller than the
losses predicted by the fluid theories. A similar depletion of
EVDF at high energies was also reported for other kinds of

low-pressure gas discharges.13–15 Note that the deviation of
the EVDF from a Maxwellian does not necessarily mean that
the SEE cannot play a significant role in the thruster dis-
charge. In experiments with a Hall thruster operating at high
discharge voltages, the maximum electron temperature and
the electron cross-field current were strongly affected by the
SEE properties of the channel wall materials, as shown in
Fig. 1 �Refs. 16 and 17�.

In recent particle-in-cell �PIC� simulations10–12 and in
the kinetic study,13 we showed that the SEE effect on power
losses in a thruster discharge is quite different from what was
predicted by previous fluid and kinetic studies. In simula-
tions, the EVDF was found to be strongly anisotropic, de-
pleted at high energies, and in some cases, even nonmono-
tonic. The average kinetic energy of electron motion in the
direction parallel to the walls is several times larger than the
average kinetic energy of electron motion in the direction
normal to the walls. Secondary electrons form two beams
propagating between the walls of a thruster channel in oppo-
site radial directions10,11 �also predicted in Ref. 18 in the
modified fluid approximation�. In the present paper, the focus
is on the role of the elastic electron scattering �due to
electron-atom and Coulomb collisions� in the formation of
the EVDF and, consequently, on its role in the electron-wall
interaction processes in the thruster discharge. It is shown
that for a typical high-performance Hall thruster, the electron
fluxes to the walls are limited by the source of electrons,
overcoming the wall potential and leaving the plasma. The
flux of these electrons is determined mainly by the frequen-
cies of elastic electron collisions with atoms and ions. The
sheath insulating properties depend on the electron fluxes to
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the walls and, therefore, on the rate of elastic scattering of
plasma electrons.

In previous kinetic studies, Meezan and Cappelli8 devel-
oped a kinetic model based on the so-called nonlocal ap-
proach. The nonlocal approach �described, for example, in
Ref. 19� was developed for large gas discharges with the
distance between walls �gap� of order tens of centimeters and
at pressures above 10 mTorr, where the electron mean free
path is much smaller than the discharge gap �c�H. Because
of the smallness of the electron mean free path in these gas
discharges, the EVDF is isotropic even for electrons with
energy high enough to overcome the wall potential. In Hall
thrusters the characteristic distance between walls is given by
the channel width. The traditional nonlocal approach is not
applicable to Hall thrusters, which operate in the opposite
limit �c�H. Because the electron mean free path in Hall
thrusters is much larger than the channel width, the EVDF
has been shown to be anisotropic.11 Moreover, the anisotropy
of the EVDF strongly affects the electron flux to the wall, as
shown below. Practical analytical formulas are derived for
wall fluxes, secondary electron fluxes, plasma parameters,
and contribution to the electron current due to SEE. The
calculations based on the analytical formulas agree well with
the results of numerical simulations.

An important implication of the present work is that fu-
ture theoretical and experimental studies need to determine
the influence of these kinetic effects on the thruster perfor-
mance, heating, and erosion of the channel walls. For in-
stance, the reduction of the gas density in the thruster chan-
nel might significantly reduce the electron fluxes to the walls
because in xenon plasmas of Hall thrusters the electron col-
lisions with neutral atoms is the major scattering process
while the Coulomb scattering of the ions gives a small con-
tribution.

II. ELECTRON VELOCITY DISTRIBUTION FUNCTION
IN THE HALL THRUSTER CHANNEL

Formation of the EVDF in the channel of a Hall thruster
discharge was studied using a one–dimensional particle-in-
cell code. Let us discuss applicability of the one-dimensional
approach for the EVDF calculations. According to the mea-
surements reported in Refs. 16 and 20 the maximum electron
temperature can be a factor of 10 smaller than the discharge
voltage �Fig. 1�. This means that electrons acquire energy
from the electric field and lose it due to inelastic collisions
and wall losses many times, while they move from the cath-
ode to the anode. This means that the energy relaxation
length is much smaller than the channel width. There are a
number of processes resulting in the electron energy loss:
inelastic collisions with atoms and ions, losses to the walls,
collective interaction between high-energy and low-energy
electrons, etc. A typical value for the electron gyroradius, �c,
is about a millimeter in the acceleration zone. Plasma elec-
trons can move across the magnetic field lines due to colli-
sions with neutrals or due to turbulent collisions, with the
total effective scattering frequency �scat, leading to a cross-
field displacement due to diffusion x�2�D�t, where the dif-
fusion coefficient is D�=�scat�c

2 /2. An electron loses its en-
ergy due to inelastic collisions and wall losses with the
effective loss frequency �loss �see Sec. VI for detailed de-
scription of �loss�. The energy relaxation length is determined
by the distance on which a typical electron traverses during
time �loss

−1 . This distance is of order 2�c
��scat /2�loss.

Hybrid simulations of Hall thrusters21,22 predict neutral
gas density of order 1012–1013 cm−3 in the acceleration re-
gion. For the plasma regimes studied in the present work
�neutral density of few 1012 cm−3�, the ratio ��scat /�loss� of
the effective scattering and loss frequencies is not very high:
a factor of a few. Therefore, the energy relaxation length is a
few gyroradii, i.e., much smaller than the length of the ion
acceleration region �a few centimeters� measured in typical
Hall thrusters.8,20,23–27 Therefore, it follows that the electron
kinetics can be essentially described by a one-dimensional
model, assuming the values of electric and magnetic field as
local parameters. This assumption implies that the electric
field and plasma parameters do not change significantly on
the scale of energy relaxation length.

Note that it is rather difficult to estimate the exact energy
relaxation length in a Hall thruster, because the actual gas
density profile is not well known. Therefore, the above as-
sumption of a moderate frequency ratio needs to be verified,
probably for each specific Hall thruster. Nevertheless, be-
cause of a reasonable neutral density range used in this work,
it is believed that the qualitative conclusions described by
our one-dimensional model remain valid for two-
dimensional �2D� calculations as well.

The code, geometry, and numerical results are described
in detail elsewhere.10–12 In short, we simulate a one-
dimensional slab of plasma between emitting walls. Exter-
nally applied electric field, Ez, is directed parallel to walls in
the z direction; externally applied magnetic field, Bx, is nor-
mal to the walls in the x direction. Both are assumed con-
stant. The particle-in-cell code simulates nonuniform plasma

FIG. 1. �Color online� The dependence of the maximum electron tempera-
ture on the discharge voltage for the conventional thruster with high-SEE
boron nitride channel walls and the segmented thruster with low-SEE float-
ing segmented electrodes made of carbon velvet material from Ref. 17. The
horizontal �magenta� line shows the fluid theory predictions.
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density profile, sheath, wall fluxes, and EVDF. Typical re-
sults of numerical simulations are shown in Figs. 2 and 3. In
Fig. 2, the results of the code are shown for Ez=52 V/cm,
Bx=91 G, the gas density 2�1012 cm−3, which corresponds
to the average elastic scattering frequency �en=1.4
�106 s−1. To introduce the anomalous transport along the
electric field, Ez, we added an effective frequency of turbu-
lent scattering in the plane perpendicular to magnetic field
�turb=7.8�106 s−1. In Fig. 3, Ez=200 V/cm, Bx=100 G, the
gas density 1012 cm−3, �en=�turb=0.7�106 s−1. The EVDFs
shown in Figs. 2 and 3 are generally not Maxwellian and
consist of two different groups of electrons: the bulk elec-
trons and SEE beams. Yet, for different electron energy
ranges, the EVDF may be approximated by an anisotropic
Maxwellian EVDF with the corresponding effective tem-

FIG. 2. �Color online� �a� EVDF over the x velocity �normal to the walls�
plotted as a function of energy wx. �Solid black line� total EVDF; �dotted
blue line� bulk electrons; �dashed green line� SEE beams; �dot-dashed ma-
genta line� Maxwellian EVDF with Tx=10.1 eV. �b� EVDF over the x ve-
locity �parallel to the walls� plotted as a function of wz. �Solid black line�
bulk EVDF; �dot-dashed magenta line� Maxwellian EVDF with Tz

=20.1 eV. EVDFs are obtained in the discharge center; the dashed vertical
lines indicate the plasma potential. Plasma parameters correspond to case 1
of Table I.

FIG. 3. �Color online� �a� EVDF over the x velocity �normal to the walls�
plotted as a function of energy wx. �Solid black line� total EVDF; �dotted
blue line� bulk electrons; �dashed green line� SEE beams; �dot-dashed ma-
genta line� Maxwellian EVDF with Tx=12.1 eV. �b� EVDF over the z ve-
locity �parallel to the walls� plotted as a function of energy wz. �Solid black
line� bulk EVDF; �dot-dashed magenta line� a Maxwellian with Tz

=24.1 eV. The dashed vertical lines indicate the plasma potential. �c� The
color plot of the two-dimensional EVDF over the x and z velocities plotted
as a function of energies wx and wz. EVDFs are obtained in the discharge
center; the dashed vertical lines in �a� and �b� indicate the plasma potential.
Plasma parameters correspond to case 3 of Table I.
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peratures, Tex and Tez, shown in Figs. 2 and 3. The EVDF
over normal to walls velocity, fx�vx�, can be obtained by
averaging of the three-dimensional �3D� EVDF fx�vx�
=�−�

� dvydvzf�vx ,vy ,vz�. This EVDF as a function of wx

=mvx
2 /2 incidentally appears to be close to a Maxwellian

with an effective “normal” temperature, Tex only for elec-
trons trapped in the potential well, i.e., with the kinetic en-
ergy small compared with the potential energy corresponding
to the wall potential �the confinement threshold�, wx�−e	,
as evident in Figs. 2�a� and 3�a�. The wall potential is nega-
tive relative to the plasma center. However, in the text below,
	 is referred to an absolute value of the wall potential, i.e.,
without the minus notation.

The EVDF over velocity, in the z direction �parallel to
walls� fz�vz�, can be obtained by averaging of the three-
dimensional EVDF fz�vz�=�−�

� dvxdvyf�vx ,vy ,vz�. This func-
tion, as a function of wz=mvz

2 /2, incidentally appears to be
close to a Maxwellian with the effective temperature, Tez, as
evident in Figs. 2�b� and 3�b�. The exact definitions of these
effective temperatures are given in Refs. 11 and 12. Note that

due to strong depletion of the EVDF for electron energies
above confinement threshold �wx
e	� the ratio between the
average temperatures Tex and Tez is an indication of strong
anisotropy of the bulk plasma EVDF, in contrast to the ratio
of the average energies, �wx	 / �wz	 �Refs. 10–12�, which is an
indication of anisotropy of the high-energy part of the EVDF.
This is because if the EVDF is a Maxwellian with the same
temperatures Tex and Tez in both directions but has a cutoff in
the x direction due to wall losses of high-energy electrons
with energy wx
e	, the average energy in the z direction is
�wz	=Tez /2, whereas the average energy in the x direction,
�wx	�Tx /2 and �wx	 / �wz	�1, even though Tex=Tez.

Table I summarizes results of numerical simulations for
a number of considered thruster cases. Typically, the ratio of
the electron temperatures Tez /Tex is about two �compare lines
8 and 9�. Note that such a considerable difference between
Tez and Tex is highly unusual for the gas discharges. The
main reason for this is that the electron mean free path is

TABLE I. Comparison of PIC simulation results with values given by Eqs. �2�–�4�, �13�, and �15�. Ez is the electric field along the plasma channel, parallel
to the walls, Bx is the magnetic field in the direction normal to the walls, H is the width of the channel, na is the atom density, �turb is the turbulent collision
frequency, 	 is the wall potential, Tex is the electron temperature in the direction normal to the walls obtained by fitting an exponent to fx�wx�, Tez is the
electron temperature in the direction parallel to the walls obtained by fitting an exponent to fz�wz�, �en is the average electron-atom elastic scattering collision
frequency, �c is the electron mean free path corresponding to the electron energy equal to Tez, ne is the electron density in the discharge center, �p

=�bp /�1p is the secondary electron emission coefficient due to the plasma bulk primary electrons only, �bp is the flux of secondary electrons emitted from the
wall due to the primary flux of plasma bulk electrons �1p, �b=�bb /�1b is the secondary electron emission coefficient due to the beam electrons only, �bb is
the flux of secondary electrons emitted from the wall due to the primary flux of beam electrons coming from the opposite wall �1b, Jz is the total electron
current, Jbz is the electron current due to the contribution of secondary electrons, and �i,e are the ion and electron flux to the wall from plasma, respectively.
�i,e are in units �1020 m−2 s−1�, f. s. stands for “from simulations,” k is the correction coefficient in Eq. �13� k
Tez

�for k=1� /Tez
�PIC�.

# Simulation number 1 2 3 4 5 6

1 Simulation parameters
�constants� �Refs. 10–12�

SEE included Yes No Yes No Yes No

2 Ez �V/cm� 52 52 200 200 200 200

3 Bx �G� 91 91 100 100 100 100

4 H �cm� 2.5 2.5 2.5 2.5 3 3

5 na �1012 cm−3� 2 2 1 1 1 1

6 �turb �106 s−1� 7.81 7.81 0.7 0.7 0.7 0.7

7 Values obtained in simulations 	 �V� 23 24.1 19.4 25.8 24.9 28

8 Tex �eV� 10.1 10.6 12.1 11.9 12.1 11.9

9 Tez �eV� 20.1 20.4 36.7 41.8 39.3 41.9

10 �en �106 s−1� 1.4 1.4 0.7 0.7 0.7 0.7

11 �c �m� 1.90 1.91 5.13 5.48 5.31 5.48

12 ne �1011 cm−3� 1.93 2.23 1.58 1.70 1.86 1.90

13 �p 1.18 n/a 1.59 n/a 1.72 n/a

14 �b 0.564 n/a 0.920 n/a 0.732 n/a

15 Jz �A/m2� 82 89 85 29 45 33

16 Jbz �A/m2� 2.3 n/a 58.4 n/a 13.1 n/a

17 �i �1020 m−2 s−1� 2.44 2.76 2.03 2.23 2.65 2.71

Comparison of simulation results with analytical theory

18 Estimated parameters Eq. �3�, ne, Tex f. s. �i 2.62 3.1 2.35 2.51 2.77 2.80

19 Eq.�2�, 	, Tez f. s. �e 3.04 3.38 2.3 2.31 2.93 2.89

20 Eq. �4�, Tex, Tez f. s. 	 �V� 25.9 25.8 18.6 21.5 27.1 29.2

21 Eq. �15�, 	, Tez f. s. Tx �eV� 10.7 11.1 12.7 15.6 15.2 16.8

22 Eq. �13�, �en, �turb, Tex f. s. Tz �eV� 28.0 27.7 68.6 68.9 76.8 77.2

23 Correction coefficient k 1.39 1.36 1.87 1.65 1.96 1.84

24 Eq. �20�, �p,b, ne,Tex f. s. Jbz �A/m2� 3.2 n/a 68.1 n/a 21.5 n/a
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very large �about 100 cm� as compared to the channel width
��1–3 cm�.

It is important to emphasize that according to the results
of numerical simulations, the plasma parameters, including
the plasma potential and the electron temperatures, are al-
most insensitive to the SEE. Table I summarizes the results
of self-consistent particle-in-cell simulations10–12 for the
same thruster input parameters with and without taking SEE
into account. According to these simulations, the SEE
strongly increases the electron cross-field current but has
little influence on the electron temperature for a given value
of the electric field. This result will be discussed in the last
section of this paper.

The electrons with energy sufficient to overcome the
sheath potential, quickly escape from the plasma to the walls,
where depending on their energy, these electrons are either
lost due to recombination at the wall or produce secondary
electrons. For both events, the high-energy part of the EVDF
is strongly depleted �see Figs. 2�a� and 3�a�� and often
termed as the loss cone �LC� in the velocity space.14,15 The
loss cone in the velocity space �vx ,vy ,vz� is shown in Fig. 4.
Electrons with a given kinetic energy w form a spherical
shell in velocity phase space. If w
e	 �where, again, 	 is
the plasma potential in the center relative to the wall and w
=m�vx

2+vy
2+vz

2� /2�, then some of these electrons have an en-
ergy of motion normal to the wall sufficient to leave the
system, wx
e	.

Most of the results in this section are based on analysis
of EVDF in an ECR discharge at low pressures developed in
Ref. 15 and applied here for the Hall thrusters. The key con-
cept for description of the EVDF and wall losses is the con-
cept of the loss cone. As shown below, the flux to the wall
and the effective frequency of electron-wall losses are deter-
mined by the loss cone. Therefore, it is important to carefully
calculate the loss-cone characteristics. Consider an electron

with a total kinetic energy in all directions w
e	. In the
velocity phase space the velocities of trapped electrons with
wx�e	 are located outside the cone with the opening angle,

 such that cos�
 /2�=�e	 /w �see Fig. 4�. Note that the
opening angle, 
, depends on the energy w. The total spheri-
cal angle of the loss cone in phase space leading to wall
losses at one wall is �1=2��1=2��0


/2sin 
�d
�
=2��1−cos�
 /2��=2��1−e	 /w�. Taking into account two
walls gives �=2�1. The EVDF is strongly depleted in the
loss cone,13 as clearly seen in Figs. 2�a� and 3�a�. This deple-
tion results in strong reduction of the wall fluxes compared
to the case when loss cone is filled.

In the fluid models, it is implicitly assumed that the loss
cone is always filled, which is not the case for most colli-
sionless plasmas. Therefore, the conventional fluid expres-
sions for the electron flux to the walls and the sheath poten-
tial drop are not applicable for the Hall thruster plasma. The
analytical solution of the kinetic equation for the EVDF in
the loss cone, f lc, was derived in Ref. 15. The EVDF in the
loss cone is filled due to elastic scattering which transfers
electrons from outside of the loss cone �wx�e	� to the loss
cone �wx
e	�, and is emptied by a free flight of loss-cone
electrons to the walls with a transit time of the order of H /vx.
Here, H is a characteristic size of the plasma bounded be-
tween two walls or channel width. In other words, elastic
scattering of electrons in the plasma provides a supply of
high-energy electrons, which can escape to the walls. Note
that the electron distribution function over velocity parallel
to the walls �normal to the magnetic field� is not depleted
�see Figs. 2�b� and 3�b��. This is because the main contribu-
tion into fz�wz� comes from trapped electrons with energy
wx�e	, even though wz
e	. The loss rate of these elec-
trons is determined by elastic scattering into the loss cone
which is proportional to electron-atom collision frequency,
�en, and is much slower than the loss rate of the energetic
electrons with wx
e	, which is given by the transit time
estimate �H /vx, �en� �H /vx�−1. In the end, this occurs due
to the large electron mean free path, �c�H.

In Ref. 15, the solution of the kinetic equation for the
EVDF in the loss cone was obtained assuming that the dif-
ferential cross section has no singularity at small angles. This
is correct for an electron kinetic energy of the order of the
ionization potential. As discussed above the EVDF outside
the loss cone �wx�e	� is much larger than the EVDF inside
the loss cone, where wx
e	. The main processes that form
the EVDF inside and outside the loss cone are the elastic
scattering and spatial displacement, so that other processes—
inelastic collisions and heating—can be neglected. The col-
lisional integral with neutrals can be written in the form:
St�f�=na��f�− f�vd�� d�d�, where na is the gas density
and f� is the EVDF of electrons before scattering to a given
velocity v�; � is the elastic scattering cross section. Neglect-
ing inelastic collisions and heating, the EVDF is determined
by the kinetic equation,

vx� � f

�x
�

�

= na� �f� − f�v
d�

d�
d� .

We seek a solution of this equation for the EVDF in the loss
cone. The EVDF outside the loss cone is much larger than

FIG. 4. �Color online� The definition of the loss cone. The cross section of
the sphere at vy =0 in the three-dimensional velocity space �vx ,vy ,vz� for
particles with energy w=m�vx

2+vy
2+vz

2� /2
e	. The �red� section of the
circle marked by arrows is the loss cone.

057104-5 Kinetic effects in a Hall thruster discharge… Phys. Plasmas 14, 057104 �2007�

Downloaded 01 May 2007 to 198.35.3.89. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



inside the loss cone, therefore f�� f and can be neglected in
the collision integral on the right-hand side of the equation.
Then, direct integration of the equation gives the EVDF as
an integral over time of flight of the scattering rate from
outside of the loss cone to the loss cone,15

f lc�x,v� = na�
x

L

dx�
1

vx
�

0

�/2

vf��x�,v��
d�

d�
d� . �1�

For an isotropic EVDF the integration over angles is straight-
forward and f lc�x ,v�=na�x

Ldx�v�f�x� ,v� /vx. Therefore, the
EVDF in the loss cone is smaller by a factor of order
H�na=H /�c compared with the EVDF outside the loss cone.
For an anisotropic EVDF the integration cannot be carried
out analytically. However, the ratio of the EVDF in the loss
cone to the EVDF outside the loss cone is also proportional
to H /�c with some correction factor of order unity, which is
necessary to account for the EVDF anisotropy.

III. PARTICLE FLUXES TO THE WALLS
IN HALL THRUSTER CHANNEL

A. Strong reduction of the electron fluxes
to the walls due to the depleted loss cone compared
with predictions of fluid theories

As shown in the previous section the electron flux to the
wall in the limit of the large electron mean free path �c

�H is reduced by a factor of order H /�c compared with the
calculation assuming an EVDF with a filled loss cone. For
typical thruster conditions H /�c�1/100 and the reduction is
considerable. Making use of Eq. �1� the electron flux to the
wall can be written as

�e 

H

8�c
ne�8Tez

�m
exp�−

	

Tez
� . �2�

Here, ne is the plasma density in the center; see, e.g., Ref. 28
for details. For a Maxwellian isotropic EVDF the flux to the
wall is equal to 1/4nw

�8Te /�m, where nw is the density at
the wall, which relates to the central density through the
Boltzmann relationship nw=ne exp�−e	 /Te�. Equation �2�
has two major differences from the fluid model: the electron
temperature Tez enters the equation, and there is an additional
small factor, H /2�c, which accounts for strong reduction of
the electron flux due to the depleted loss cone. The exact
coefficient 1/2 was chosen to fit best the simulation results
�compare lines 19 with 17 in Table I�.

In Eq. �2�, we used the fact that for most of our calcu-
lations the temperature in the z direction is larger than the
temperature in the x direction. Electrons scattered into the
loss cone �i.e., lost to the walls� have a total energy of more
than e	 and mostly originate from large pitch angle scatter-
ing. Therefore, the fraction of these electrons and their ve-
locity are determined by the electron temperature in the di-
rection of the external electric field rather than in the
direction to the walls. This explains why Tez appears in Eq.
�2� instead of Tex.

B. Penetration coefficients of secondary electron
emission beams

The secondary electrons emitted from the opposite walls
are accelerated in the near-wall sheaths towards the plasma
and form counterstreaming beams. For a quasistationary
symmetric plasma, the wall potentials at the opposite walls
are the same. When the beam electrons penetrate through the
plasma bulk, they may gain enough energy �due to the E�B
motion� to induce the SEE from the opposite wall. Refer-
ences 10, 11, and 18 introduced a phenomenological coeffi-
cient ��� to describe the penetration of the SEE beam from
one wall to the opposite wall. The scattering of the SEE
beams can occur due to collisions with atoms or bulk plasma
electrons. However, the probability for such scattering to oc-
cur is small �about a few percent� because the electron mean
free path is very large for typical thruster conditions. Another
mechanism of scattering involves the high-frequency
electric-field oscillations with a period shorter or comparable
with electron time of flight from one wall to another. A pos-
sible candidate of high-frequency electric-field oscillations is
the two-stream instability between the SEE beam and bulk
electrons. Such instability excites the plasma oscillations
with the frequency close to the electron plasma frequency.
The necessary condition for this instability is a nonmono-
tonic 1D EVDF fx�vx�=�0

�f�vx ,w��dw�. The 1D EVDF can
become nonmonotonic due to presence of a very large num-
ber of SEE electrons. PIC simulations confirm such theoret-
ical predictions; see Refs. 10 and 29 for details.

The two-stream instability results in the energy transfer
from the SEE beam to bulk electrons, therefore some SEE
beam electrons cannot leave the plasma because their wx

energy becomes smaller than the potential energy at the wall,
wx�e	. This leads to accumulation of loosely trapped in
plasma potential or “weakly confined” former SEE beam
electrons. However, after a certain time these electrons can
acquire energy from “fresh” SEE beam electrons and leave
the plasma. Figure 5 shows the temporal evolution of the
SEE fluxes. About 20% of the SEE beam does not reach the
opposite wall. However, the reduction of flux is totally com-
pensated by the flux of weakly confined electrons. In PIC
codes this reduction may also be attributed to the finite num-
ber of particles per computational grid cell and the associated
electric-field noise.

To summarize: �i� The effective penetration coefficient
should be equal to unity, i.e., all SEE electrons from one wall
eventually reach the opposite wall, and �ii� the emitted elec-
tron flux is balanced by the sum of fluxes due to the beam
and the weakly confined �former secondary� plasma elec-
trons. In other words, the contribution of secondary electrons
to the total current balance at the ceramic channel walls is
canceled. This is seemingly similar to the plasma-wall inter-
action without SEE from the walls. However, according to
the present model, the ion current to the wall is balanced by
the flux of bulk electrons scattered into the loss cone, which
is much smaller than the electron flux calculated in the fluid
theories. Results of numerical simulations confirm this as-
sumption �compare curves 1 and 2 in Fig. 5�.
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C. Analytical estimate of the wall potential
and collision-ejected electron flux

The ion flux can be estimated from the Bohm criterion
and the fact that for a planar geometry the plasma density
approximately decreases twice from the plasma center to the
plasma sheath boundary in a collisionless case �when ion
mean free path is large compared with the channel�; see, for
example, Ref. 28,

�i = 1
2ne

�Tex/M . �3�

Table I compares results of calculations for the electron, �e,
and ion, �i, fluxes based on analytical formulas of Eqs. �2�
and �3�, respectively, with simulation data �compare lines 18
and 19 with 17�. An agreement between analytical and nu-
merical results is surprisingly good, given the fact that the
analytical model uses approximate estimates rather than ex-
act calculations.

Because the SEE beams do not contribute to the current
balance at the walls, the ambipolarity criterion implies that
the ion wall flux is compensated by the collision-ejected
electron flux �i=�e. Under such conditions, the plasma po-
tential at the center with respect to the wall �i.e., the potential
drop in the sheath and presheath� can be determined from
Eqs. �2� and �3�, and reads

	 =
Tez

e
ln� H

�c

�Tez

Tex
� M

2�m
� . �4�

For the conditions of Fig. 1, the contribution from the sheath
potential gives 5.3, the potential drop in the plasma gives
0.70, and the reduction due to empty loss cone gives −5.1,
totaling the value of the wall potential being of order Tez /e,

	 �
Tez

e
�� M

2�m
+ ln 2 − ln�2�c

H
�Tex

Tez
��

=
Tez

e
�5.3 + 0.7 − 5.1� �

Tez

e
. �5�

The first term is the sheath potential, the second is due to the
potential drop in the plasma, and the last term accounts for
reduction of the electron flux due loss cone. Note a big con-
tribution of the term describing the reduction of the electron
flux due to the loss-cone effects, not described in the current
fluid and kinetic theories.

Let us emphasize here that the result of Eq. �5� is only
superficially similar to the result obtained by the fluid theory
for the sheath potential drop in the space-charge-limited re-
gime of the sheath.2–5 The physical meaning of Eq. �5� is
fundamentally different because the SEE’s contribution to
the flux balance is self-canceled and, therefore, the plasma
potential with respect to the wall does not depend on the
SEE.

IV. REASON FOR ANISOTROPIC ELECTRON
VELOCITY DISTRIBUTION FUNCTION

In a typical gas discharge, the EVDF is isotropic, i.e., it
is a function of a single variable, the electron speed, f�v�.
The reason for isotropic EVDF is that the energy relaxation
time for an electron is longer than the scattering time due to
collisions, or the energy relaxation frequency is smaller than
the electron-neutral elastic scattering collision frequency,30

�loss � �en. �6�

Here, �loss=�wall+�exc+�iz is the energy relaxation frequency
determined by the wall losses, excitation, and ionization pro-
cesses. As evident from Fig. 6, if the electron kinetic energy
is above 40 eV, the total inelastic collision frequency due to
excitation and ionization becomes comparable with the elas-
tic scattering collision frequency ��exc+�iz�
�en /2 for xe-

FIG. 5. �Color online� Temporal dependences of wall fluxes obtained in PIC
simulation �case 1 of Table I�. �a� Ion flux �1, magenta, dashed� and
collision-ejected electron flux �2, cyan, solid� at the right wall, x=H. �b�
Secondary electron beam emitted at the left wall x=0 �3, black, solid�,
secondary electron beam registered at x=H �5, red, dashed�, flux of weakly
confined electrons at x=H �6, green, dotted�, sum of fluxes of the beam and
of the weakly confined electrons at x=H �4, blue, short-dashed�.

FIG. 6. �Color online� The frequency scaling of the electron impact colli-
sions in xenon. �Solid black line� the elastic scattering; �dashed red line�
excitation; �dotted green line� ionization; �dot-dashed line� the sum of ion-
ization and excitation cross sections.
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non. As a result, inequality �6� becomes weaker leading to
the EVDF anisotropy.

Moreover, for electrons with energy larger than the con-
finement threshold, w
e	, wall losses are the fastest energy
loss mechanism and the characteristic energy relaxation fre-
quency becomes the frequency of scattering into the loss
cone, which equals to the collision frequency of elastic scat-
tering times the probability to be scattered into the loss
cone.13 This probability is determined by the ratio of the
loss-cone angle, �, to the entire sphere, which gives

�wall � �en�/4� . �7�

As shown in Sec. II, accounting for the two walls, the loss
cone for electron energies w is

� = 4�
w − e	

w
. �8�

Substituting Eq. �7� into Eq. �8� yields the effective loss fre-
quency due to scattering to the loss cone and subsequent loss
to the walls,

�wall � �en
w − e	

w
��w − e	� . �9�

Here, we added the Heaviside function to indicate that the
wall losses occur only for electrons with energies above the
confinement threshold, w
e	.

Summing all energy losses into the total energy relax-
ation frequency, the criterion for the EVDF anisotropy can be
written as

�en
w − e	

w
��w − e	� + �exc + �iz 


1

2
�en. �10�

For w
2e	 the loss cone is wide, which gives the large
effective energy relaxation frequency, and anisotropy should
be expected for this energy range.

In summary, an electron undergoes just few scattering
collisions before it is lost to the walls or loses its energy due
to excitation or ionization. Because the number of collisions
is small, the EVDF does not relax to an isotropic EVDF. The
farther estimates of these effects are given in the next sec-
tion.

V. ANALYTICAL ESTIMATES FOR ELECTRON
TEMPERATURES IN HALL THRUSTER CHANNEL

A. Analytical estimate of the electron temperature
in the direction parallel to walls of the Hall thruster
channel, Tez

Figures 2 and 3 demonstrate that the EVDF can be de-
scribed as a Gaussian function with a temperature Tez in the
direction parallel to walls of the Hall thruster channel. This
fact may be somewhat incidental and may change for very
different thruster parameters. Nevertheless, for practically all
our simulations the EVDF f�vz� was very close to a Gaussian
�Maxwellian� in a very large range of the electric and mag-
netic fields; some possible explanations are given below.
This is why Tez is defined here as the energy value decreas-
ing e times the EVDF over z velocity and assumed to be the
same �constant� for different energy ranges. The flux of en-

ergetic electrons to the walls is determined by this tempera-
ture and wall potential. As evident from Fig. 6, for the elec-
trons with kinetic energies less than 40 eV, it is more
probable to escape to the walls than to lose their energy on
ionization and excitation, �w
 ��exc+�iz�. Therefore, the
electron temperature Tz can be roughly estimated from the
balance of the electron heating and wall energy losses for
these fast electrons. A similar balance approach was used in
Ref. 16 to estimate the electron-wall collision frequency for
the measured electron temperature and known plasma condi-
tions, where the ionization and excitation losses are negli-
gible compared to the electron energy losses at the walls. The
Joule heating for electrons constituting the high-energy tail
of the EVDF can be written as

JezfEzH �
�turb + �en

�c
2m

e2Ez
2nefH , �11�

where nef is the effective density of electrons with energy
larger than the confinement threshold, w
e	, and Jezf is the
current carried by fast electrons. The rate of the wall losses
can be expressed as Q����w	nefTezH. Here, ��w	 is the av-
eraged wall loss frequency from Eq. �9�, which is within
20% accuracy and can be approximated by ��w	
=�enTez / �e	+Tez�. Thus the rate of the wall losses reads

Q� = �en

Tez
2

e	 + Tez
nefH . �12�

Equations �4�, �11�, and �12� allow to determine the electron
temperature, Tez, and the plasma potential. By equating Eqs.
�11� and �12�, and using Eq. �4�, the approximate expression
for the electron temperature in the direction of the electric
field is

Tez � k�1 +
�turb

�en
�me�E

B
�2�1 + ln� H

�c
�Tez

Tex

Mi

2�me
�� ,

�13�

where k is the correction coefficient, which can be obtained
by a comparison of the approximate temperature estimations
with the exact result of PIC simulations. The comparison of
Eq. �13� with simulation data is shown in Table I �compare
lines 22 and 9�. An agreement is again satisfactory given the
fact that approximate calculations were performed only as an
order of magnitude estimate. The correction coefficient k is
varied between 1.4 and about 2. For the thruster conditions
in Figs. 2 and 3, Eq. �13� can be simplified using Eq. �5�:
Tez�2k�1+�turb /�en�me�E /B�2. The correction factor k can
be attributed to the fact that the EVDF f�vz� is not exactly a
Maxwellian with a constant slope in semilogarithmic plot;
whereas Eq. �13� approximates the electron temperature in
the EVDF tail, rather than in the bulk, as given in Table. I.

Note that Eq. �13� can be also derived making use of the
average kinetic equation, similar to the analysis performed in
Ref. 19. The electron heating is described in such an ap-
proach as the energy diffusion process towards higher ener-
gies with the energy diffusion coefficient D�� 1 � 2 ��en

+�turb�����2, which is the product of the effective scattering
frequency ��en+�turb� and the energy step, ��=eE�c, ac-
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quired by an electron from the electric field during a spatial
step in the z direction on one electron cyclotron radius �c

=v� /�c. Diffusion process is balanced by the losses with the
frequency �w, which gives for the electron temperature esti-
mate

Tez � 2�D�/�w =�2��en + �turb�
�w

�� . �14�

Substituting expressions for �� and �w into Eq. �14� gives
the same Eq. �13�. Note that because the wall loss frequency
is comparable to the elastic scattering frequency and the tur-
bulent collision frequency is not much larger than the elastic
scattering frequency, the factor �2��en+�turb� /�w is just a
few times. It means that electron heating occurs on distances
of the order of few cyclotron radii and the energy relaxation
length is also small, as has been discussed above at the be-
ginning of Sec. II.

B. Analytical estimate of the electron temperature
in the direction perpendicular to walls of the Hall
thruster channel, Tex

The estimate for the electron temperature is the most
difficult one. Electrons are heated in the z direction and scat-
ter due to elastic collisions in the x direction. The electron
temperature is determined by the electron energy where elec-
trons start to considerably lose their energy, which corre-
sponds to energy, w=e	+Tez in the z direction. Under con-
ditions of a Hall thruster discharge, the confinement
threshold e	 is smaller or comparable with the electron tem-
perature in the z direction, e	�Tez; see Eq. �5� and Table I
�compare lines 7 and 9�. This means that the loss cone

� = 4�
Tez

e	 + Tez

is wide for these energies, and the average frequency of elec-
tron losses to the walls ��w	=�enTez / �e	+Tez� is comparable
to the elastic scattering frequency, ��w	��en. Electrons do
not have enough time to scatter �isotropize� energy acquired
from the electric field in the z direction, and the EVDF be-
comes anisotropic. Moreover, the transformation of energy
from the y ,z directions to the x direction occurs due to scat-
tering within of the outside of the loss cone, �1−� /4�� �if
electrons scatter inside the loss cone they are quickly lost�.
The ratio of temperatures can be estimated as Tex�Tez�1
−� /4��. Then, substituting the equation for the loss cone
gives

Tex �
e	

e	 + Tez
Tez, �15�

where the ratio e	 /Tez can be obtained from Eq. �4�. There
is a satisfactory agreement between the approximate results
obtained from Eq. �15� with the exact results of PIC simula-
tions �Table I, lines 21 and 8�. Note that if e	�Tez, the loss
cone is small �1−� /4���1 and Tex /Tez→1, the EVDF be-
comes isotropic. In the opposite limit e	�Tez, the loss cone
is large, ��→4�, and according to Eq. �15�, Tex /Tez�1,
the EVDF is anisotropic �see Table I, lines 7–9�.

VI. ELECTRON CROSS-FIELD CURRENT INDUCED
BY SECONDARY ELECTRON EMISSION
BEAMS

The SEE beams can carry a considerable fraction of the
total current �Table I, lines 15 and 16�. The velocity in the
direction of the current of the secondary electrons in the
crossed electric and magnetic fields is given by

ubz�x� = −
Ez

Bx
sin��c�

0

x

dx
1

ubx�x�� , �16�

where ubz�x� and ubx�x� are the beam velocity components;
see Fig. 7. The electric current density along the z direction
created by the electrons of a SEE beam and averaged over
the channel width is

Jbz = −
e

H
�

0

H

dxnb�x�ubz�x� , �17�

where

nb�x� =
�b

ubx�x�
=

�p�i

�1 − �b�ubx�x�
�18�

is the beam density, �b and �i are the beam and the ion fluxes
towards the wall, and �b and �p are the partial emission
coefficients due to the electrons of the beam and the plasma
bulk, respectively. Here, we used the expression for the beam
flux from Refs. 10–12. Assuming for simplicity that the
beam velocity normal to the walls is constant, ubx�x�� ūbx

=�2e	 /m, and substituting ubz�x� from Eq. �16� and nb�x�
from Eq. �18� into Eq. �17� with the ion flux �3�, one obtains

Jbz �
m

H

�p

1 − �b

1

2
ne�Tex

M

Ez

Bx
2�

0

�H

d� sin � , �19�

where �H
H�c / ūbx is the maximal phase of cyclotron rota-
tion of the beam. PIC simulations with typical Hall thruster
parameters show that usually �H�2�n+3� /2, where n
=1,2 , . . . . Then the integral in �19� is equal to unity, and the

FIG. 7. Schematics of SEE electron trajectory and SEE contribution to the
total current.
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electric current density due to the SEE beams emitted from
both walls is

Jbz �
m

H

�p

1 − �b
ne�Tex

M

Ez

Bx
2 . �20�

Note that the parameters of �p, �b depend on the electron
temperature, wall potential, and electric field.

This current can significantly contribute to the total con-
ductivity and may explain the influence of wall material on
thruster operation observed in experiments,1,2,17 as well as
the influence of the channel width on the electron
temperature.31 This estimate is similar to Morozov’s predic-
tion of the near-wall conductivity32–34 but calculated self-
consistently.

The physical explanation for the current in Eq. �20� is as
follows. The SEE electron during one pass from the wall to
the opposite wall moves in the z direction by the distance of
order �c=v� /�c, where v�=ud=Ez /Bx. Then, the average
velocity in the z direction is �uz	��c / �H / ūbx�=udubx /H�c;
see Fig. 6. The expression for the current density Jbz

=enb�uz	 corresponds to the exact calculation in Eq. �20�.
Table I contains the values of the electric current density due
to the SEE beams obtained in simulations �line 16� and ana-
lytically making use of Eq. �20� �line 24�. There is a fairly
good agreement between the numerical and analytical val-
ues. Note that for simulation case 3 in Table I, the SEE
beams create the major part of the current.

VII. CONCLUSIONS

We derived simplified analytical formulas for averaged
kinetic plasma parameters of a Hall thruster. The system con-
sists of equations for electron flux to the wall,

�e 

H

8�c
ne�8Tez

�m
exp�−

	

Tez
� ,

for the ion flux to the walls,

�i = 1
2ne

�Tex/M ,

flux balance assuming that SEE fluxes completely compen-
sate each other,

�i = �e;

the balance of fluxes yields formulas for the wall potential

	 =
Tez

e
ln� H

�c

�Tez

Tex
� M

2�m
� .

The electron temperature in the direction parallel to the walls
can be obtained from the energy balance equation for fast
electrons, which gives

Tez � k�1 +
�turb

�en
�me�E

B
�2�1 + ln� H

�c

�Tez

Tex

Mi

2�me
�� ,

where fitting parameter k varies between 1.4 and 2. The elec-
tron temperature in the direction perpendicular to the walls
can be obtained from analysis of loss cone, which gives

Tex �
e	

e	 + Tez
Tez.

Finally, the contribution of SEE electrons to the total current
reads

Jbz �
m

H

�p

1 − �b
ne�Tex

M

Ez

Bx
2 ,

where �b and �p are the partial emission coefficients due to
the electrons of the beam and the plasma bulk, respectively.

The plasma potential, the wall electron flux, and the
electron temperatures calculated making use of these formu-
las agree well with the values obtained in particle-in cell
simulations. The SEE effect on power losses in a thruster
discharge is shown to be quite different from what was pre-
dicted by previous fluid and kinetic studies. Kinetic calcula-
tion gives the values of the electron flux of a few orders of
magnitude smaller than the values obtained using the fluid
approach. The difference is attributed to the presence of a
large depleted loss cone in the electron velocity distribution
function. The EVDF in the loss cone is determined by elastic
scattering of electrons due to collisions with atoms and Cou-
lomb collisions. Our results suggest that even in the presence
of a strong SEE from the walls, a contribution of the wall
energy losses to the electron energy balance is much smaller
than predicted by fluid theories and is proportional to the
elastic scattering of electrons on collisions with atoms and
ions and not inversely proportional to the electron time of
flight to the walls, as is commonly assumed. It means that the
wall flux is proportional to the gas density and is indepen-
dent on the channel width �as long as H��c�. This is very
different from plasmas with the isotropic electron EVDF, in-
cluding Maxwellian and non-Maxwellian EVDFs.

Another important result of these kinetic studies is that
the SEE contribution to the current balance at the walls is
self-canceled and, therefore, the plasma potential with re-
spect to the wall and the electron energy losses on the walls
are almost insensitive to the SEE. Secondary electrons emit-
ted from the walls form two counterstreaming beams. The
effective coefficient for penetration of the SEE beams from
one wall to the opposite wall is equal to unity. One may
assume the complete penetration of the emitted electrons be-
cause the beam electrons, which lose energy due to the two-
stream instability and cannot leave the plasma in one pass
between the channel walls, will eventually gain energy and
escape the plasma. The SEE beams may carry a considerable
portion of the cross-field electron current due to their cycloid
trajectory in the E�B field. This effect should depend on
SEE properties of the channel wall material.

Finally, the results of these theoretical studies may ex-
plain the influence of wall material on the thruster operation
and plasma parameters observed in experiments,1,2,17 as well
as influence of the channel width on the electron
temperature31 by the enhancement of the electron conductiv-
ity due to contribution of the SEE electrons, rather than the
enhancement of the energy losses to the walls. This conclu-
sion is in agreement with the analysis of experimental data in
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Ref. 16. Future studies should be focused on generalization
of this model to the two-dimensional geometry.
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